One of the most common operation for any analyst is merging datasets. As per my estimate, an analyst spends at least 10 – 20% of his productive time joining and merging datasets. If you spend so much time doing joins / merges, it is extremely critical that you join datasets in most efficient manner. This is the thought behind this post.
Traditionally, databases have been designed in a manner where tables capture details of individual functional area.
Example below shows two tables, one capturing patient details in a clinic (from one time registrations) and second table showing their appointment details.
In order to analyze things like:
we need to join the two tables.
I’ll cover various ways in which you can do this in SAS:
[stextbox id=”section”]1. Sort / sort / Merge:[/stextbox]This is the most common approach used in SAS. In order to use data step command, we need to sort the datasets first and then merge using the common key:
[stextbox id=”grey”]proc sort data=patient_details; by pat_id;
proc sort data=appointment_details; by pat_id;
data analysis_set;
merge patient_details (in=a) appointment_details (in=b);
by pat_id;
/* note by variables are in the same order as sort by */
if a and b; /* Control statement, other options: if a; if b; if not a; if not b;*/[/stextbox]The control statement defines the kind of merge. By specifying “if a and b”, values present in both the tables will be picked. [stextbox id=”section”]2. PROC SQL:[/stextbox]
If you are used to writing SQL, PROC SQL might be the easiest way to learn joins in SAS
[stextbox id=”grey”]PROC SQL; CREATE TABLE analysis_set0 AS SELECT a.*, b.* FROM patient_details a INNER JOIN /* control statement*/ /*other options LEFT JOIN, RIGHT JOIN, OUTER JOIN*/ appointment_details b ON a.pat_id=b.pat_id; QUIT; RUN;
[/stextbox][stextbox id=”section”]3. PROC FORMAT:[/stextbox]
This is one of the latest ways I have learnt, but the most efficient one. Using this method, we convert the smaller file into a format.
[stextbox id=”grey”]DATA format1; SET patient_details (keep = PAT_ID); fmtname = '$pat_format'; label = '*'; RENAME pat_id=start; RUN;
PROC SORT data=format1 nodupkey; by pat_id; RUN;
PROC FORMAT CNTLIN=format1; RUN;[/stextbox]
The first step creates a dataset format1 from patient_details. PROC FORMAT then converts it into a format. Finally we use
[stextbox id=”grey”]DATA analysis_set; SET appointment_details; if PUT(pat_id,$pat_format.) = '*'; RUN;[/stextbox]
This way to join datasets typically takes 30 – 40% lower computation time compared to the two approaches mentioned above.
Since this might look advanced SAS, I will devote one more post explaining formats in more details.
In the meanwhile, if you know of any other way to join tables, please let me know.
Kunal Jain is the Founder and CEO of Analytics Vidhya, one of the world's leading communities of Al professionals. With over 17 years of experience in the field, Kunal has been instrumental in shaping the global Al landscape. His expertise spans diverse markets, from developed economies like the UK to emerging ones like India, where he has successfully led and delivered complex data-driven solutions. As a recognized thought leader, Kunal has empowered countless individuals to realize their Al ambitions through his visionary approach to Al education and community building. Before founding Analytics Vidhya, Kunal earned both his undergraduate and postgraduate degrees from IIT Bombay and held key roles at Capital One and Aviva Life Insurance across multiple geographies. His passion lies at the intersection of analytics, Al, and fostering a thriving community of data science professionals.
Python Joins: A Guide to Merge Pandas and Learn...
Comprehensive Introduction to merging in SAS
Combining datasets in SAS – simplified!
Tricky Base SAS interview questions : Part-II
4 tricky SAS questions commonly asked in interview
Comprehensive guide for Data Exploration in SAS...
Comprehensive guide for Data Exploration in R
Comprehensive guide to SAS PROC Format
40 must know Questions on Base SAS for Analysts...
Join the DataFrames like SQL tables in Python u...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Hi, I have a couple of question concerning this: 1) I understand this is how we create not the ultimate dataset but rather that ANALYSIS_SET is a temporary set to be used for further computations e.g. counting visits in the last month 2) In the last example age and gender will be missing from the ANALYSIS_SET? Another way of merging datasets may be using KEY= option not sure if I can paste links here, pls google "Using the KEY= Option for Lookup Tables" best regards Zbig
Hi all , I was going through a paper "Choosing the Right Technique to Merge Large Data Sets Efficiently"..the conclusion derived was that,for many to one merge, proc sql is better than data step merge(i am just limiting myself to these two basic merging techniques) on the parameters of CPU Timing,I/O operations and memory.Well, in case of many to many merging Proc SQL is the only one which will bring the desired result. So my question here is that,Can we consider Proc SQL to be better than merge for all instances..What about the extra effort used in forming the cartesian product ..is it too little to consider when compared with sorting the datasets in data step merge.
Hi! The solution using a format was very popular many years ago (in version 5). It was mentioned to be much faster that the ordinary solution. There was however one drawback: The formats at that time were load modules, stored in real memory. So there was a limit in practice around 15000 items in the format statement. So, this was many years ago. Now a format is a file, with a binary tree. The limits are taken away. However, some of the old questions still remain. Is this efficient when the format is only used once? Does this work also on really, really big data volumes? This is an intreresting subject, but I do not have the ansers. / Br Anders