As the day was coming to a close, I thought of fitting in another meeting. Two analysts in my team had been working for creating a data set for one of the predictive models we wanted to build. The combined work experience (on predictive modeling) between the analysts was ~ 5 years. I expected to breeze through the meeting and leave for the day.
So, the meeting started. Five minutes into the meeting and I knew that the meeting will take much longer than I initially thought!
The reason? Let’s go through the discussion as it happened:
Kunal: How many rows do you have in the data set?
Analyst 1: (After going through the data set) X rows
Kunal: How many rows do you expect?
Analyst 1 & 2: Blank look at their faces
Kunal: How many events / data points do you expect in the period / every month?
Analyst 1 & 2: …. (None of them had a clue)
The number of rows in the data set looked higher to me. The analysts had missed it clearly, because they did not benchmark it against business expectation (or did not have it in the first place). On digging deeper, we found that some events had multiple rows in the data sets and hence the higher number of rows.
A high percentage of analysts would have gone through similar experience at some point or other in their career.
At times, either due to timeline pressures or due to some other reason, we overlook doing basic sanity checks on the dataset we are working on. However, overlooking data accuracy at initial stages of project can prove very costly and hence usually it pays off to be paranoid about data accuracy.
I usually follow a simple framework for checking accuracy of data points. In this article, I’ll share the process, I typically use for checking data sanity. The framework goes top down, which suits well. If you have any glaring mistakes in the data sets, they would be evident early in the process.
Please note that the remaining article assumes that you are working on a structured data set. For unstructured datasets, while the principles would still apply, but the process would change.
[stextbox id=”section”]Step 1: Check number of columns and rows against expectations [/stextbox]
The first step as soon as you get any data set would be to check whether it has all the required rows and columns. Number of columns would be dictated by the number of hypothesis you have and the variables you would need to prove / dis-prove these hypothesis.
Number of rows on the other hand would be dictated by number of events you expect in the chosen period. The easiest benchmark would be based on your business understanding.
[stextbox id=”section”]Step 2: Check for duplicates at id level (and not for entire row) [/stextbox]
Once you are sure all the columns are present and number of rows look within expected range, quickly check for duplicates at level of your id (or the level at which the rows should be unique – it could be a combination of variables)
[stextbox id=”section”]Step 3: Check for blank columns, large % of blank data, high % of same data [/stextbox]
Now that you know all columns are there and there are no duplicates, look out if there are columns which are entirely blank. This can happen in case some join fails or in case there is some error in data extraction. If none of the columns are blank, look at the % of blank cases by each column and frequency distributions to find out if the same data is being repeated in more cases than expected.
[stextbox id=”section”]Step 4: Look at the distribution across various segments – check against business understanding and use pivot tables[/stextbox]
This step continues where 3 finishes. Instead of looking at frequencies of data points individually, look at their distributions. Do you expect normal, bi-polar or uniform distribution? Does the distribution look like what you expect?
[stextbox id=”section”]Step 5. Check outliers on all key variables – especially the computed ones[/stextbox]
Once the distributions look fine, check for outliers. Especially in cases where you have computed columns. Do the values on extreme look like as you had wanted? Make sure there are no divisions by zero, you have capped the values you would want to.
[stextbox id=”section”]Step 6: Check if values of a few test cases are in sync[/stextbox]
Once you have checked all the columns individually, check whether they are in sync with each other. Check whether various dates of cases are in chronological order (e.g. . Do the balances, spend and credit limit look in sync with each other for your credit card customers?
[stextbox id=”section”]Step 7: Pick up a few rows and check out their values in the underlying systems[/stextbox]
Once all the previous steps are done, it is time to check a few samples by querying the underlying systems or databases. If there was any error in data, you should have ideally identified it by now. This step just ensures that the data is as it was in the underlying systems.
Please note that some of these errors can be spotted through use of logs provided by your tool. Looking at the logs usually provides a lot of information about errors and warnings.
These were the steps I use to check the accuracy of data and they usually help me to spot any glaring errors in the data. Obviously, they are not the answer to every possible error, but they should give you a good starting point and direction. What do you think about this framework? Are there other framework / methods you use to check the accuracy of data? If so, please add them in the comments below.
Kunal Jain is the Founder and CEO of Analytics Vidhya, one of the world's leading communities of Al professionals. With over 17 years of experience in the field, Kunal has been instrumental in shaping the global Al landscape. His expertise spans diverse markets, from developed economies like the UK to emerging ones like India, where he has successfully led and delivered complex data-driven solutions. As a recognized thought leader, Kunal has empowered countless individuals to realize their Al ambitions through his visionary approach to Al education and community building. Before founding Analytics Vidhya, Kunal earned both his undergraduate and postgraduate degrees from IIT Bombay and held key roles at Capital One and Aviva Life Insurance across multiple geographies. His passion lies at the intersection of analytics, Al, and fostering a thriving community of data science professionals.
Common data preparation mistakes and how to avo...
Common mistakes analysts make during analysis a...
5 Simple manipulations to extract maximum infor...
What I did when I had to work with unstructured...
8 Productivity hacks for Data Scientists &...
How to identify a good (and bad) Business Analyst?
13 Tips to make you awesome in Data Science / A...
The art of structured thinking and analyzing
The Key Concepts To Investigating Your Dataset
7 Steps of Data Exploration & Preparation ...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Nice steps. Kunal. :) I have something to add. Data files usually need to be combined. Example, the member information and purchase data files are usually stored differently. Hence, before all the cleaning starts, I do suggest to combine the files first so that we can do logic checks across member and purchase files. However, we should expect member id to appear multiple times in the purchase files. In this case, to combine the member and purchase files, it is usually using assignment of member file to purchase file. However, I did come across before that the IT personnel did not provide me full records of either the member or purchase file. To make matters worse, in SPSS, combining by assignment dont show very obviously when both files doesnt match properly by assignment. What I do nowadays is: 1) create a flag column with 1s in the purchase file 2) aggregate the purchase file by member Id and sum the flag. 3) Combine this purchase file with unique member id with the member file 4) Make sure that both files have indicator to check the records are from member or purchase file. 5) Check how many records come from member or purchase or both files. This might not be a neccesary step for some researchers but to me it is vital to ensure that before data cleaning starts, all my files are combined properly.
Completely agreed Jarrod. I almost assumed the scenario described in the start of the article (i.e. the dataset is already prepared and needs to go through a final check). I think data accuracy should be checked after every join takes place. Thanks, Kunal
Very Useful, But i have a query in data cleaning process, our first step is to fill missing values(blanks) or else do we need to find outliers first?if we try to fill missing values, the outliers in the datamay change the mean value ? so can you suggest me which is the best way to proceed?