Lifetime Lessons: 20 Things Every Data Scientist Must Know Today

Lifetime Lessons: 20 Things Every Data Scientist Must Know Today

Kunal Jain Last Updated : 19 Dec, 2015
2 min read

Introduction

I’ve spent close to a decade in data science & analytics now. Over this period, I have learnt new ways of working on data sets and creating interesting stories. However, before I could succeed, I failed numerous times. Success doesn’t come easy!

New Feature Beta
Personalized GenAI Learning Path 2025✨ Crafted Just for YOU!

How did I succeed? The answer is simple. Every time I failed, I said to myself, ‘Let’s take one more step’. And I managed to travel a long distance. I learnt statistics, data mining, SAS, R, Python, Machine Learning on the way.

I confess that, in last 10 years, the methods of predictive modeling have become faster. Data is becoming larger than ever. We faced constraints when faced with Big Data. But, people came out with several big data technologies.

It’s overwhelming to see how the things have changed. But, there would still be many who are lagging to catch up with success in data science industry.

Hence, I decided to share 20 things which experience has taught me in the last 10 years. Hope you find them useful. The idea is to help people, who don’t have a mentor to provide them this advice all the time. So go ahead and read!

successful data scientist

Some Useful Resources

Learn Python

Learn Ensemble Modeling

Learn Boosting Algorithms

Learn Machine Learning Algorithms

Learn k- fold Cross Validation

Learn Feature Engineering

Resources on Neural Networks and Deep Learning

Master Structured Thinking Skill

 

If you like what you just read & want to continue your analytics learning, subscribe to our emailsfollow us on twitter or like our facebook page.

Kunal Jain is the Founder and CEO of Analytics Vidhya, one of the world's leading communities of Al professionals. With over 17 years of experience in the field, Kunal has been instrumental in shaping the global Al landscape. His expertise spans diverse markets, from developed economies like the UK to emerging ones like India, where he has successfully led and delivered complex data-driven solutions. As a recognized thought leader, Kunal has empowered countless individuals to realize their Al ambitions through his visionary approach to Al education and community building. Before founding Analytics Vidhya, Kunal earned both his undergraduate and postgraduate degrees from IIT Bombay and held key roles at Capital One and Aviva Life Insurance across multiple geographies. His passion lies at the intersection of analytics, Al, and fostering a thriving community of data science professionals.

Responses From Readers

Clear

Arai
Arai

Kunal good day. First of all, thank you so much for your blogs on analytics VId. I think that your blogs help me understand better ML and Business analytics more..My name is Arailym. I am from Kazakhstan.I want build my career in business analytics. I have B.S. degree in Economics. I know statistics basics and try to learn as much more algoritms of ML. I see that is company where I want to apply is required deep learning math. I read blogs of linear algebra and probability, but I afraid that i couldn't remind All math. (especially discrete mathematics, integrals so on) AlsoI want to participate in university competition. They required present project . I don\t know what to get available data and which tool i should use. I afraid if i take data from Kaggle that the would think that i cheated/ I want to do solve problems like segmentation or fraud detection. Plese help me. Thank you in advance. I

Akash
Akash

Hi Kunal, Thanks for sharing. I have a query on 5th one, Ensemble modeling. I was in the impression that different and appropriate algorithms are used to build models and improve accuracy. But here you say combine models and algorithms to boost accuracy. Can you elaborate on that by citing examples? Thanks,

Moumita Mitra
Moumita Mitra

Sir ... I regularly follow your post in linkedin. It is very helpful.. After completing my MCA in 2007 I had only 1 year java experience..After that i got married .Due to some circumstances I couldnt continue my job..But now I want to reboost my career in Bigdata industry...Is it possible after taking such a long gap to reenter in this industry?I am already doing small courses from coursera as you suggested.I am eagerly waiting for your valuable suggestion.

We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.

Show details