Ensemble techniques in machine learning function much like seeking advice from multiple sources before making a significant decision, such as purchasing a car. Just as you wouldn’t rely solely on one opinion, ensemble models combine predictions from multiple base models to enhance overall performance. One popular method, majority voting, aggregates predictions to select the class label by majority. This tutorial explores ensemble learning concepts, including bootstrap sampling to train models on different subsets, the role of predictors in building diverse models, and practical implementation in Python using scikit-learn.
It addresses binary classification scenarios and delves into techniques to tackle issues like data mining, which identifies valuable patterns from data, and managing high variance through ensemble methods. Additionally, the tutorial covers optimizing ensemble performance with hyperparameter tuning, providing a comprehensive foundation for leveraging ensemble learning effectively.
Are you a beginner looking for a place to start your journey in data science and machine learning? Presenting two comprehensive courses, full of knowledge and data science learning, curated just for you!
This article was published as a part of the Data Science Blogathon.
Ensemble learning is a machine learning technique that enhances accuracy and resilience in forecasting by merging predictions from multiple models. It aims to mitigate errors or biases that may exist in individual models by leveraging the collective intelligence of the ensemble.
The underlying concept behind ensemble learning is to combine the outputs of diverse models to create a more precise prediction. By considering multiple perspectives and utilizing the strengths of different models, ensemble learning improves the overall performance of the learning system. This approach not only enhances accuracy but also provides resilience against uncertainties in the data. By effectively merging predictions from multiple models, ensemble learning has proven to be a powerful tool in various domains, offering more robust and reliable forecasts.
Let’s understand the concept of ensemble learning with an example. Suppose you are a movie director and you have created a short movie on a very important and interesting topic. Now, you want to take preliminary feedback (ratings) on the movie before making it public.
A: You may ask one of your friends to rate the movie for you.
Now it’s entirely possible that the person you have chosen loves you very much and doesn’t want to break your heart by providing a 1-star rating to the horrible work you have created.
B: Another way could be by asking 5 colleagues of yours to rate the movie.
This should provide a better idea of the movie. This method may provide honest ratings for your movie. But a problem still exists. These 5 people may not be “Subject Matter Experts” on the topic of your movie. Sure, they might understand the cinematography, the shots, or the audio, but at the same time may not be the best judges of dark humor.
C: How about asking 50 people to rate the movie?
Some of which can be your friends, some of them can be your colleagues and some may even be total strangers.
The responses, in this case, would be more generalized and diversified since now you have people with different sets of skills. And as it turns out – this is a better approach to get honest ratings than the previous cases we saw.
With these examples, you can infer that a diverse group of people are likely to make better decisions as compared to individuals. The same holds for a diverse set of models compared to single models. Ensemble Learning, a technique in Machine Learning, achieves this diversification.
Now that you have a gist of ensemble learning, let’s explore various techniques in ensemble learning along with their implementations.
In this section, we will look at a few simple but powerful techniques, namely:
The max voting method is generally used for classification problems. In this technique, multiple models are used to make predictions for each data point. The predictions by each model are considered as a ‘vote’. The predictions which we get from the majority of the models are used as the final prediction.
For example, when you asked 5 of your colleagues to rate your movie (out of 5); we’ll assume three of them rated it as 4 while two of them gave it a 5. Since the majority gave a rating of 4, the final rating will be taken as 4. You can consider this as taking the mode of all the predictions.
The result of max voting would be something like this:
Colleague 1 | Colleague 2 | Colleague 3 | Colleague 4 | Colleague 5 | Final rating |
5 | 4 | 5 | 4 | 4 | 4 |
Sample Code:
Here x_train consists of independent variables in training data, y_train is the target variable for training data. The validation set is x_test (independent variables) and y_test (target variable) .
# IMPORTS
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import statistics as st
import warnings
warnings.filterwarnings('ignore')
# SPLITTING THE DATASET
df = pd.read_csv('heart.csv')
x = df.drop('target', axis = 1)
y = df['target']
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0)
# MODELS CREATION
model1 = DecisionTreeClassifier()
model2 = KNeighborsClassifier()
model3= LogisticRegression()
model1.fit(x_train,y_train)
model2.fit(x_train,y_train)
model3.fit(x_train,y_train)
# PREDICTION
pred1=model1.predict(x_test)
pred2=model2.predict(x_test)
pred3=model3.predict(x_test)
# FINAL_PREDICTION
final_pred = np.array([])
for i in range(0,len(x_test)):
final_pred = np.append(final_pred, st.mode([pred1[i], pred2[i], pred3[i]]))
print(final_pred)
Alternatively, you can use “VotingClassifier” module in sklearn as follows:
from sklearn.ensemble import VotingClassifier
model1 = LogisticRegression(random_state=1)
model2 = tree.DecisionTreeClassifier(random_state=1)
model = VotingClassifier(estimators=[('lr', model1), ('dt', model2)], voting='hard')
model.fit(x_train,y_train)
model.score(x_test,y_test)
Similar to the max voting technique, multiple predictions are made for each data point in averaging. In this method, we take an average of predictions from all the models and use it to make the final prediction. Averaging can be used for making predictions in regression problems or while calculating probabilities for classification problems.
For example, in the below case, the averaging method would take the average of all the values.
i.e. (5+4+5+4+4)/5 = 4.4
Colleague 1 | Colleague 2 | Colleague 3 | Colleague 4 | Colleague 5 | Final rating |
5 | 4 | 5 | 4 | 4 | 4.4 |
Sample Code:
model1 = tree.DecisionTreeClassifier()
model2 = KNeighborsClassifier()
model3= LogisticRegression()
model1.fit(x_train,y_train)
model2.fit(x_train,y_train)
model3.fit(x_train,y_train)
pred1=model1.predict_proba(x_test)
pred2=model2.predict_proba(x_test)
pred3=model3.predict_proba(x_test)
finalpred=(pred1+pred2+pred3)/3
This is an extension of the averaging method. All models are assigned different weights defining the importance of each model for prediction. For instance, if two of your colleagues are critics, while others have no prior experience in this field, then the answers by these two friends are given more importance as compared to the other people.
The result is calculated as [(5*0.23) + (4*0.23) + (5*0.18) + (4*0.18) + (4*0.18)] = 4.41.
Colleague 1 | Colleague 2 | Colleague 3 | Colleague 4 | Colleague 5 | Final rating | |
weight | 0.23 | 0.23 | 0.18 | 0.18 | 0.18 | |
rating | 5 | 4 | 5 | 4 | 4 | 4.41 |
Sample Code:
model1 = tree.DecisionTreeClassifier()
model2 = KNeighborsClassifier()
model3= LogisticRegression()
model1.fit(x_train,y_train)
model2.fit(x_train,y_train)
model3.fit(x_train,y_train)
pred1=model1.predict_proba(x_test)
pred2=model2.predict_proba(x_test)
pred3=model3.predict_proba(x_test)
finalpred=(pred1*0.3+pred2*0.3+pred3*0.4)
Now that we have covered the basic ensemble techniques, let’s move on to understanding the advanced techniques.
Stacking is an ensemble learning technique that uses predictions from multiple models (for example decision tree, knn or svm) to build a new model. This model is used for making predictions on the test set. Below is a step-wise explanation for a simple stacked ensemble:
Sample code:
We first define a function to make predictions on n-folds of train and test dataset. This function returns the predictions for train and test for each model.
def Stacking(model,train,y,test,n_fold):
folds=StratifiedKFold(n_splits=n_fold,random_state=1)
test_pred=np.empty((test.shape[0],1),float)
train_pred=np.empty((0,1),float)
for train_indices,val_indices in folds.split(train,y.values):
x_train,x_val=train.iloc[train_indices],train.iloc[val_indices]
y_train,y_val=y.iloc[train_indices],y.iloc[val_indices]
model.fit(X=x_train,y=y_train)
train_pred=np.append(train_pred,model.predict(x_val))
test_pred=np.append(test_pred,model.predict(test))
return test_pred.reshape(-1,1),train_pred
Now we’ll create two base models – decision tree and knn.
model1 = tree.DecisionTreeClassifier(random_state=1)
test_pred1 ,train_pred1=Stacking(model=model1,n_fold=10, train=x_train,test=x_test,y=y_train)
train_pred1=pd.DataFrame(train_pred1)
test_pred1=pd.DataFrame(test_pred1)
model2 = KNeighborsClassifier()
test_pred2 ,train_pred2=Stacking(model=model2,n_fold=10,train=x_train,test=x_test,y=y_train)
train_pred2=pd.DataFrame(train_pred2)
test_pred2=pd.DataFrame(test_pred2)
Create a third model, logistic regression, on the predictions of the decision tree and knn models.
df = pd.concat([train_pred1, train_pred2], axis=1)
df_test = pd.concat([test_pred1, test_pred2], axis=1)
model = LogisticRegression(random_state=1)
model.fit(df,y_train)
model.score(df_test, y_test)
In order to simplify the above explanation, the stacking model we have created has only two levels. The decision tree and knn models are built at level zero, while a logistic regression model is built at level one. Feel free to create multiple levels in a stacking model.
Blending follows the same approach as stacking but uses only a holdout (validation) set from the train set to make predictions. In other words, unlike stacking, the predictions are made on the holdout set only. The holdout set and the predictions are used to build a model which is run on the test set. Here is a detailed explanation of the blending process:
Sample Code:
We’ll build two models, decision tree and knn, on the train set in order to make predictions on the validation set.
model1 = tree.DecisionTreeClassifier()
model1.fit(x_train, y_train)
val_pred1=model1.predict(x_val)
test_pred1=model1.predict(x_test)
val_pred1=pd.DataFrame(val_pred1)
test_pred1=pd.DataFrame(test_pred1)
model2 = KNeighborsClassifier()
model2.fit(x_train,y_train)
val_pred2=model2.predict(x_val)
test_pred2=model2.predict(x_test)
val_pred2=pd.DataFrame(val_pred2)
test_pred2=pd.DataFrame(test_pred2)
Combining the meta-features and the validation set, a logistic regression model is built to make predictions on the test set.
df_val=pd.concat([x_val, val_pred1,val_pred2],axis=1)
df_test=pd.concat([x_test, test_pred1,test_pred2],axis=1)
model = LogisticRegression()
model.fit(df_val,y_val)
model.score(df_test,y_test)
The idea behind bagging is combining the results of multiple models (for instance, all decision trees) to get a generalized result. Here’s a question: If you create all the models on the same set of data and combine it, will it be useful? There is a high chance that these models will give the same result since they are getting the same input. So how can we solve this problem? One of the techniques is bootstrapping.
Bootstrapping is a sampling technique in which we create subsets of observations from the original dataset, with replacement. The size of the subsets is the same as the size of the original set.
The Bagging (or Bootstrap Aggregating) technique uses these subsets (bags) to provide a fair idea of the distribution (complete set). The size of subsets created for bagging may be less than the original set.
Let’s consider another question before we go further: If the first model, and then the next (or probably all models), incorrectly predict a data point, will combining predictions improve results? Boosting addresses such situations.
Boosting is a sequential process, where each subsequent model attempts to correct the errors of the previous model. The succeeding models are dependent on the previous model. Let’s understand the way boosting works in the below steps.
Bagging and Boosting are two of the most commonly used techniques in machine learning. In this section, we will look at them in detail. Following are the algorithms we will be focusing on:
Bagging algorithms:
Boosting algorithms:
For all the algorithms discussed in this section, we will follow this procedure:
For this article, I have used the Loan Prediction Problem. You can download the dataset from here. Please note that a few code lines (reading the data, splitting into train-test sets, etc.) will be the same for each algorithm. In order to avoid repetition, I have written the code for the same below, and further discussed only the code for the algorithm.
#importing important packages
import pandas as pd
import numpy as np
#reading the dataset
df=pd.read_csv("/home/user/Desktop/train.csv")
#filling missing values
df['Gender'].fillna('Male', inplace=True)
Similarly, fill values for all the columns. EDA, missing values and outlier treatment has been skipped for the purposes of this article. To understand these topics, you can go through this article: Ultimate guide for Data Exploration in Python using NumPy, Matplotlib and Pandas.
#split dataset into train and test
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.3, random_state=0)
x_train=train.drop('Loan_Status',axis=1)
y_train=train['Loan_Status']
x_test=test.drop('Loan_Status',axis=1)
y_test=test['Loan_Status']
#create dummies
x_train=pd.get_dummies(x_train)
x_test=pd.get_dummies(x_test)
Let’s jump into the bagging and boosting algorithms!
Bagging meta-estimator is an ensembling algorithm that can be used for both classification (BaggingClassifier) and regression (BaggingRegressor) problems. It follows the typical bagging technique to make predictions. Following are the steps for the bagging meta-estimator algorithm:
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1))
model.fit(x_train, y_train)
model.score(x_test,y_test)
0.75135135135135134
from sklearn.ensemble import BaggingRegressor
model = BaggingRegressor(tree.DecisionTreeRegressor(random_state=1))
model.fit(x_train, y_train)
model.score(x_test,y_test)
Random Forest is another ensemble machine learning algorithm that follows the bagging technique. It is an extension of the bagging estimator algorithm. The base estimators in random forest are decision trees. Unlike bagging meta estimator, random forest randomly selects a set of features which are used to decide the best split at each node of the decision tree.
Looking at it step-by-step, this is what a random forest model does:
Note: The decision trees in random forest can be built on a subset of data and features. Particularly, the sklearn model of random forest uses all features for decision tree and a subset of features are randomly selected for splitting at each node.
To sum up, Random forest randomly selects data points and features, and builds multiple trees (Forest).
Python Code:
'''
The following code is for the Random Forest
Created by - ANALYTICS VIDHYA
'''
# importing required libraries
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# read the train and test dataset
train_data = pd.read_csv('train-data.csv')
test_data = pd.read_csv('test-data.csv')
# view the top 3 rows of the dataset
print(train_data.head(3))
# shape of the dataset
print('\nShape of training data :',train_data.shape)
print('\nShape of testing data :',test_data.shape)
# Now, we need to predict the missing target variable in the test data
# target variable - Survived
# seperate the independent and target variable on training data
train_x = train_data.drop(columns=['Survived'],axis=1)
train_y = train_data['Survived']
# seperate the independent and target variable on testing data
test_x = test_data.drop(columns=['Survived'],axis=1)
test_y = test_data['Survived']
'''
Create the object of the Random Forest model
You can also add other parameters and test your code here
Some parameters are : n_estimators and max_depth
Documentation of sklearn RandomForestClassifier:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
'''
model = RandomForestClassifier()
# fit the model with the training data
model.fit(train_x,train_y)
# number of trees used
print('Number of Trees used : ', model.n_estimators)
# predict the target on the train dataset
predict_train = model.predict(train_x)
print('\nTarget on train data',predict_train)
# Accuray Score on train dataset
accuracy_train = accuracy_score(train_y,predict_train)
print('\naccuracy_score on train dataset : ', accuracy_train)
# predict the target on the test dataset
predict_test = model.predict(test_x)
print('\nTarget on test data',predict_test)
# Accuracy Score on test dataset
accuracy_test = accuracy_score(test_y,predict_test)
print('\naccuracy_score on test dataset : ', accuracy_test)
Adaptive boosting or AdaBoost is one of the simplest boosting algorithms. Usually, models use decision trees for modeling. The process creates multiple sequential models, with each model correcting errors from the previous one. AdaBoost assigns weights to incorrectly predicted observations, and the subsequent model aims to predict these values accurately.
Below are the steps for performing the AdaBoost algorithm:
from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(random_state=1)
model.fit(x_train, y_train)
model.score(x_test,y_test)
0.81081081081081086
from sklearn.ensemble import AdaBoostRegressor
model = AdaBoostRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
Gradient Boosting or GBM is another ensemble machine learning algorithm that works for both regression and classification problems. GBM uses the boosting technique, combining a number of weak learners to form a strong learner. Regression trees used as a base learner, each subsequent tree in series is built on the errors calculated by the previous tree.
We will use a simple example to understand the GBM algorithm. We have to predict the age of a group of people using the below data:
from sklearn.ensemble import GradientBoostingClassifier
model= GradientBoostingClassifier(learning_rate=0.01,random_state=1)
model.fit(x_train, y_train)
model.score(x_test,y_test)
0.81621621621621621
from sklearn.ensemble import GradientBoostingRegressor
model= GradientBoostingRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
XGBoost (extreme Gradient Boosting) is an advanced implementation of the gradient boosting algorithm. It has proved to be a highly effective ML algorithm, extensively used in machine learning competitions and hackathons. XGBoost has high predictive power and is almost 10 times faster than the other gradient boosting techniques. It also includes a variety of regularization which reduces overfitting and improves overall performance. Hence it is also known as ‘regularized boosting‘ technique.
Let us see how XGBoost is comparatively better than other techniques:
Since XGBoost takes care of the missing values itself, you do not have to impute the missing values. You can skip the step for missing value imputation from the code mentioned above. Follow the remaining steps as always and then apply xgboost as below.
import xgboost as xgb
model=xgb.XGBClassifier(random_state=1,learning_rate=0.01)
model.fit(x_train, y_train)
model.score(x_test,y_test)
0.82702702702702702
import xgboost as xgb
model=xgb.XGBRegressor()
model.fit(x_train, y_train)
model.score(x_test,y_test)
Before discussing how Light GBM works, let’s first understand why we need this algorithm when we have so many others (like the ones we have seen above). Light GBM beats all the other algorithms when the dataset is extremely large. Compared to the other algorithms, Light GBM takes lesser time to run on a huge dataset.
LightGBM is a gradient boosting framework that uses tree-based algorithms and follows leaf-wise approach while other algorithms work in a level-wise approach pattern. The images below will help you understand the difference in a better way.
Leaf-wise growth may cause over-fitting on smaller datasets but that can be avoided by using the ‘max_depth’ parameter for learning. You can read more about Light GBM and its comparison with XGB in this article.
import lightgbm as lgb
train_data=lgb.Dataset(x_train,label=y_train)
#define parameters
params = {'learning_rate':0.001}
model= lgb.train(params, train_data, 100)
y_pred=model.predict(x_test)
for i in range(0,185):
if y_pred[i]>=0.5:
y_pred[i]=1
else:
y_pred[i]=0
0.81621621621621621
import lightgbm as lgb
train_data=lgb.Dataset(x_train,label=y_train)
params = {'learning_rate':0.001}
model= lgb.train(params, train_data, 100)
from sklearn.metrics import mean_squared_error
rmse=mean_squared_error(y_pred,y_test)**0.5
Handling categorical variables is a tedious process, especially when you have a large number of such variables. When your categorical variables have too many labels (i.e. they are highly cardinal), performing one-hot-encoding on them exponentially increases the dimensionality and it becomes really difficult to work with the dataset.
CatBoost can automatically deal with categorical variables and does not require extensive data preprocessing like other machine learning algorithms. Here is an article that explains CatBoost in detail.
CatBoost algorithm effectively deals with categorical variables. Thus, you should not perform one-hot encoding for categorical variables. Just load the files, impute missing values, and you’re good to go.
from catboost import CatBoostClassifier
model=CatBoostClassifier()
categorical_features_indices = np.where(df.dtypes != np.float)[0]
model.fit(x_train,y_train,cat_features=([ 0, 1, 2, 3, 4, 10]),eval_set=(x_test, y_test))
model.score(x_test,y_test)
0.80540540540540539
from catboost import CatBoostRegressor
model=CatBoostRegressor()
categorical_features_indices = np.where(df.dtypes != np.float)[0]
model.fit(x_train,y_train,cat_features=([ 0, 1, 2, 3, 4, 10]),eval_set=(x_test, y_test))
model.score(x_test,y_test)
This brings us to the end of the ensemble algorithms section. We have covered quite a lot in this article!
Ensemble modeling can exponentially boost the performance of your model and can sometimes be the deciding factor between first place and second! In this article, we covered various ensemble learning techniques and saw how these techniques are applied in machine learning algorithms. Further, we implemented the algorithms on our loan prediction dataset.
This article will have given you a solid understanding of ensemble learning. If you have any suggestions or questions, do share in the comment section below. Also, I encourage you to implement these algorithms at your end and share your results with us!
And if you want to hone your skills as a data science professional then I will recommend you take up this comprehensive course that provides you all the tools and techniques you need to apply machine learning to solve business problems.
A. Bagging and boosting are ensemble learning techniques in machine learning. Bagging trains multiple models on different subsets of training data with replacement and combines their predictions to reduce variance and improve generalization. Boosting combines multiple weak learners to create a strong learner by focusing on misclassified data points and assigning higher weights in the next iteration. Examples of bagging algorithms include Random Forest while boosting algorithms include AdaBoost, Gradient Boosting, and XGBoost.
A. Bagging reduces variance by training multiple models independently on different subsets of training data and combining their predictions, while boosting reduces bias by iteratively training weak learners and focusing on misclassified data points to create a strong learner. Random Forest is a popular bagging algorithm, while AdaBoost, Gradient Boosting, and XGBoost are popular boosting algorithms.
1. Bagging: Creates multiple models from different training data samples, reducing variance.
2. Boosting: Creates multiple models with weighted training data, reducing bias.
3. Stacking: Combines predictions of multiple models using a meta-model, enhancing generalization.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
Really nice article! And just when I needed the most. Could you please upload the dataset you used? Im having an error regarding the shapes when implementing the Stacking Ensemble. Thank you!
Hi Joaquin, Glad you found this useful. You can download the dataset from this link.
Nice Article !!!
Thanks Aditya
Thank you. This is great content. Been following it from the beginning. 2 issues: Getting NameError: tree is not defined. Secondly, from section 4 onwards, there is dataset to work on. But no dataset referred to for sections before 4. So cannot run the code on data. NameError Traceback (most recent call last) in () 3 from sklearn.ensemble import BaggingClassifier 4 #model = tree.DecisionTreeClassifier() ----> 5 model = BaggingClassifier(tree.DecisionTreeClassifier(random_state=1)) 6 model.fit(x_train, y_train) 7 model.score(x_test,y_test) NameError: name 'tree' is not defined For beginners like me, will need a little more detail to follow the full notebook.
Hi Sanjoy, The codes for voting and averaging can be used with any dataset, and hence no particular dataset is attached to that section. You can try implementing the codes on loan prediction dataset and if you face any issues do let me know. Regarding the error 'tree not found' , please use the following code line : from sklearn import tree. Thank you for pointing it out. I will update the same in the post.