This article was published as a part of the Data Science Blogathon.
“I’m a bit of a freak for evidence-based analysis. I strongly believe in data.”
– Gus O’Donnell, a former British senior civil servant, economist
The whole world is a big data problem. Nowadays, we can see there are lots of opportunities for data scientists, statisticians and big data analyzers. You must torture the data and it will open up and confess all that you want to know! But is having data enough to make predictions? No! To make predictions one must clean, analyze, visualize, test and train the data.
Also, to make predictions one must plot the required graphs, check how the data is distributed, what are the numbers telling about, are they enough to make predictions or not? Once, you play with the data using various methods, it will help you in reaching your goal. So, let’s see how to play with the data and come up with the predictive output!
In this article, we are going to see one of the supervised learning algorithms called Regression. In regression, there are sub categories like Linear regression, Multiple Regression and Logistic Regression. Today we are going to discuss Logistic Regression.
In simple words, it is one concept in statistics : a measure of the relation between the mean value of one variable (e.g. output) and corresponding values of other variables.
Logistic Regression is a mathematical model used in statistics to estimate (guess) the probability of an event occurring using some previous data. Logistic Regression works with binary data, where either the event happens (1) or the event does not happen (0).
The dataset we’ll be using is about Heart Diseases. We are going to play with this data, you’ll get the dataset here : Dataset
First we need to import libraries which we’ll be using in our model creation. Also, we’ll import the dataset by adding the path of the .csv file. After adding the data, dataframe.head() command is used to print the first 5 rows of the dataset.
Python Code:
#import numpy as np
import pandas as pd
#import matplotlib.pyplot as plt
dataset = pd.read_csv('framingham_heart_disease.csv') #adding data
#print 1st 5 rows
print(dataset.head())
Before playing any game we must know the details and rules. Similarly before playing with data, we must know its details and rules for predicting the model. As we know all the columns now, let’s see what are the datatypes of these attributes, and how many null values are present in each column.
dataset.isnull().sum() dataset.dtypes
In this game, we are going to make predictions about Heart diseased patients using the data present in these attributes. What do you think? Is education important to know a person’s health? Of course no! Right? So we’ll drop that column. Also, there are many missing values present in some of the columns, so we’ll remove those columns as well as without those columns it is possible to make predictions.
Do you think this data game is so easy? Well, no! Have you observed that the column Cigsperday? Don’t you think it will help us in predictions? YES! This column is very important. But how to handle those missing values? What do you do while playing cards if one or two cards are missing? We use joker cards in place of those cards, right? So, here we’ll replace these missing values with average values.
data = dataset.drop(['education','BPMeds','totChol','BMI','glucose','heartRate' ], axis = 'columns') data.head() cigarettes = data['cigsPerDay'] cigarettes.head() cig = cigarettes.mean()
Have you observed the last column? There are values 1 or 0. This makes our data labeled data.
Then what are the dependent and independent values?
#this data is labeled data #independent variable (X) will be Age, Estimated Salary #dependent variable(y) will be Purcahsed (It will be lable) #define X,y X = dataset.iloc[:, [ 1, 3]].values y = dataset.iloc[:, 15].values #print X,y print(X[:5, :]) print(y[:5])
Now, it’s time to test and train the data!
#import train_test_split from sklearn to train and test our data from sklearn.model_selection import train_test_split #define X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) #print print(X_train[:5],'\n', '\n', y_train[:5],'\n','\n', X_test[:5],'\n','\n', y_test[:5]) #create object of LogisticRegression class to refer as classifier from sklearn.linear_model import LogisticRegression classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test)
The confusion matrix is a bit confusing right? No worries! We are going to fit the data and print the score.
X = data[['male','age','currentSmoker','cigsPerDay','prevalentStroke','prevalentHyp','diabetes','sysBP','diaBP']] y = data['TenYearCHD'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.20, random_state = 99) from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) model.score(X_test,y_test)
This score is .86! It tells us that our prediction is quite good. You can check the score by changing the random state. So, we won the game as our prediction score is good!
You can find the whole code here: Github Repository
I Arya Talathi, am currently a Computer Engineering Student, who likes to seek out new challenges; the one who finds pleasure in exploring new things.
A passionate learner who loves problem-solving, especially when it is a Data problem. Being a Data Science and Machine Learning enthusiast; always ready to play with the data and come to conclusions. Besides, invests a good amount of time in Competitive Programming and Web Designing.
I like to read and write. No amount of money can replace the kind of happiness and satisfaction I derive from writing and exploring the Data Science field. I try to share my knowledge through my writing because I believe in "Knowledge increases by sharing but not by saving".
Top 100 Data Science Interview Questions &...
Heart Disease Prediction Using Logistic Regress...
Campus Recruitment: A Classification Problem wi...
Titanic Survival Prediction Using Machine Learning
Logistic Regression in Python: Beginner’s...
Logistic Regression: An Introductory Note
Cross Sell Prediction : Solution to Analytics V...
Predict Client Subscription Using Logistic Regr...
Top 10 Machine Learning Algorithms You Must Know
An Introduction to Logistic Regression
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Great job Arya!!! 💯💯
Excellent work done
Quite insightful! This article definitely helped me :)