This article was published as a part of the Data Science Blogathon.
The amount of data being used or stored in today’s world is extremely huge. Many companies, organizations, and industries store the data and use it as per the requirement. While handling this huge amount of data, one has to follow certain steps. Whenever we start working with data, specific words/terms come to our minds. For example, data warehouses, databases, attributes, ETL, data filtering, etc. In this article, we are going to have a brief introduction to one such term named ETL.
ETL stands for extract, transform, load. Let’s see these terms one by one.
It means extracting data from its source which can be an application or another database. Extraction can be divided further into two types:
a) Partial extraction
b) Full extraction
It means transforming the raw data which has been extracted from sources. Transforming includes filtering the data, cleaning the data, mapping and transforming data, etc. This step may include some simple changes to source data or some multiprocessing which includes multiple data sources.
It means converting transformed data into the target database. The target databases can be DataMart, Data Warehouses, or databases. These destination sources are used for analytical purposes, planning business strategies, etc.
In short, the ETL tool performing the above three steps ensures that the data is complete, usable and as per the requirement for further processes like analysis, reporting, and machine learning/artificial intelligence.
Machine Learning and Artificial Intelligence include a lot of data. The cloud is the only feasible solution to store this huge amount of data. Besides, both of these techniques require large datastores for analytical model building and training. Cloud-based ETL tools are useful here to both migrate large amounts of data to the cloud and transform them to be analytics-ready.
Data Warehousing
Many of the enterprisers use ETL tools to collect data from various sources, then transform it into a consistent format and load it into a data warehouse. Then business intelligence teams can analyze the data stored in data warehouses for business purposes. Data warehouses play an important role in various business intelligence functions. Also, they act as a key component in creating dashboards/reports.
Data Migration
Data Migration is the process of transferring data from one system to another while changing the storage, database, or application. ETL plays an important role here. ETL tools help in integrating the contextual data which can be further used by business analysts/marketers for personalized marketing, improving the user experience, or in understanding customer behavior.
There are plenty of reasons why ETL is being used. ETL provides a method of moving data from various sources into a data warehouse. It helps companies to analyze their business data and further helps in making critical business decisions or planning marketing strategies. Sample data comparison can be performed between the source and target systems with the help of ETL. ETL offers deep historical context as well, which can be used for various business purposes. Besides, ETL helps to migrate the data into a data warehouse.
ETL Pipeline is a set of processes that are used to extract the data from source/multiple sources, transforming it and then loading it into the target sources. The target sources can be Datamart, data warehouses, or simple databases. This stored data is further used for analysis, data insights, reporting, or data synchronization. The main purpose of ETL Pipeline is to make data useful for business intelligence. An ETL Pipeline is useful for making the data available to marketers or decision-makers by centralizing it. Also, it helps in standardizing this data. The important use of ETL Pipeline is in data migration i.e., it helps in migrating the data from legacy systems to data warehouses. For best results, the ETL pipeline should provide continuous data processing. To gain more advantages, ETL should be such that it will increase data access.
There is a possibility that some of the data is lost or data gets corrupted because some steps are not performed correctly while transforming or loading the data. Some irrelevant data can also be there due to such mistakes.
Disparate Data Sources
Sometimes the data sources may not be aligned or mapped properly. In such cases, dealing with these data sources becomes a big challenge.
Problems with data quality and integrity
Sometimes while normalizing or transforming the data, there can be performance issues. This may lead to loss of data quality or data integrity. Hence, it becomes another big challenge while using ETL.
ETL Tools can be of different types. Some software companies develop and sell commercial ETL software products. They can be included in Enterprise Software ETL Tools. Examples of such tools are as follows:
1. SAP Data Services
2. Oracle Data Integrator
3. IBM ETL Tool
4. SAS Data Manager
Another type of ETL tool is open-source ETL tools. For example, Hadoop. Hadoop is a general-purpose distributed computing platform. It can be used to store, manipulate and analyze data. These products are free to use.
The Third type of ETL Tool is Custom ETL Tools. These are simple programming languages that are being used by many companies to write their own ETL tools. These programming languages include Python, Java, SQL, Spark, and Hadoop. These types of ETL tools provide the greatest flexibility. Although, they require a lot of effort.
Apart from these tools, Amazon AWS, Google Cloud Platform, and Microsoft Azure provide their own ETL capabilities as cloud services.
ETL model is being used by many companies for more than 30 years. Many companies read data from various sources, transform this extracted data using different techniques and then load it into the destination sources/systems. Though, some challenges to be faced while using/testing ETL tools, the ETL Tools are in use for many years. Companies use ETL to safely move their data from one system to another.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
I Arya Talathi, am currently a Computer Engineering Student, who likes to seek out new challenges; the one who finds pleasure in exploring new things.
A passionate learner who loves problem-solving, especially when it is a Data problem. Being a Data Science and Machine Learning enthusiast; always ready to play with the data and come to conclusions. Besides, invests a good amount of time in Competitive Programming and Web Designing.
I like to read and write. No amount of money can replace the kind of happiness and satisfaction I derive from writing and exploring the Data Science field. I try to share my knowledge through my writing because I believe in "Knowledge increases by sharing but not by saving".
Top 10 Must Use AI Tools for Data Analysis [202...
A Complete Guide on Building an ETL Pipeline fo...
Choosing the Top 15 ETL Tools of 2024: Comparis...
Data Integration: Strategies for Efficient ETL ...
The Ultimate Guide To Setting-Up An ETL (Extrac...
Unlock the True Potential of Your Data with ETL...
ETL & ELT – Data Engineering Essentials
Is manual ETL better than No-Code ETL: Are ETL ...
Pandas Vs PETL for ETL
ETL and Workflow Orchestration Tools
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s