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Introduction

Time Series (referred as TS from now) is considered to be one of the less known skills in the data science
space (Even | had little clue about it a couple of days back). | set myself on a journey to learn the basic
steps for solving a Time Series problem and here | am sharing the same with you. These will definitely help
you get a decent model in any future project you take up!

/\f An?is_rtic_s V_i_d _hya

COMPLETE GUIDE
TOCREATE A

TIME SERIES FORECAST
WITH

complete guide to create a time series forecast with python

Before going through this article, | highly recommend reading A Complete Tutorial on Time Series Modeling
in R and taking the free Time Series Forecasting_course. It focuses on fundamental concepts and | will
focus on using these concepts in solving a problem end-to-end along with codes in Python. Many
resources exist for time series in R but very few are there for Python so I'll be using Python in this article.

Are you a beginner looking for a place to start your data science journey? Here is a comprehensive course to
assist you in your journey. Master Time Series, Machine Learning and Deep Learning through our Certified
Blackbelt Program-

e Certified Al & ML Blackbelt+ Program

Learning Objectives:

» Learn the steps to create a Time Series forecast.
» Additional focus on Dickey-Fuller test & ARIMA (Autoregressive, moving average) models.

o Learn the concepts theoretically as well as with their implementation in python.
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What Is Time Series?

As the name suggests, TS is a collection of data points collected at constant time intervals. These are
analyzed to determine the long term trend so as to forecast the future or perform some other form of
analysis. But what makes a TS different from say a regular regression problem? There are 2 things:

1. It is time dependent. So the basic assumption of a linear regression model that the observations are
independent doesn’t hold in this case.

2. Along with an increasing or decreasing trend, most TS have some form of seasonality trends, i.e.
variations specific to a particular time frame. For example, if you see the sales of a woolen jacket over
time, you will invariably find higher sales in winter seasons.

Because of the inherent properties of a TS, there are various steps involved in analyzing it. These are
discussed in detail below. Lets start by loading a TS object in Python. We'll be using the popular
AirPassengers data set which can be downloaded here.

Please note that the aim of this article is to familiarize you with the various techniques used for TS in
general. The example considered here is just for illustration and | will focus on coverage a breadth of
topics and not making a very accurate forecast.

Loading and Handling Time Series in Pandas

Pandas has dedicated libraries for handling TS objects, particularly the datatime64[ns] class which stores
time information and allows us to perform some operations really fast. Lets start by firing up the required
libraries:
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Let's understand the arguments one by one:

1. parse_dates: This specifies the column which contains the date-time information. As we say above, the
column name is ‘Month’.

2. index_col: A key idea behind using Pandas for TS data is that the index has to be the variable depicting
date-time information. So this argument tells pandas to use the ‘Month’ column as index.

3. date_parser: This specifies a function which converts an input string into datetime variable. Be default
Pandas reads data in format 'YYYY-MM-DD HH:MM:SS'. If the data is not in this format, the format has
to be manually defined. Something similar to the dataparse function defined here can be used for this
purpose.

Now we can see that the data has time object as index and #Passengers as the column. We can cross-
check the datatype of the index with the following command:

data.index

DatetimeIndex([ '1949-01-01"', '1949-02-01', '1949-03-01', '1949-04-01°',
'1949-05-01"', '1949-06-01', '1949-07-01', '1949-08-01°',
'1949-09-01"', '1949-10-01',
'1960-03-01"', '1960-04-01', '1960-05-01', '1960-06-01°",
'1960-07-01', '1960-08-01', '1960-09-01', '1960-10-01"',
'1960-11-01"', '1960-12-01'"],
dtype='datetime64[ns]', name=u'Month', length=144, freqg=None)

Notice the dtype='datetime[ns]’ which confirms that it is a datetime object. As a personal preference, |
would convert the column into a Series object to prevent referring to columns names every time | use the
TS. Please feel free to use as a dataframe is that works better for you.

ts = data['#Passengers’]
ts.head(10)
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Before going further, I'll discuss some indexing techniques for TS data. Lets start by selecting a particular
value in the Series object. This can be done in following 2 ways:

#1. Specific the index as a string constant: ts['1949-01-01'] #2. Import the datetime 1library and use

'datetime' function: from datetime import datetime ts[datetime(1949,1,1)]

Both would return the value ‘112’ which can also be confirmed from previous output. Suppose we want all
the data upto May 1949. This can be done in 2 ways:

#1. Specify the entire range: ts['1949-01-01':'1949-05-01"'] #2. Use ':' if one of the indices is at ends:

ts[:'1949-05-01"]

Both would yield following output:

There are 2 things to note here:

1. Unlike numeric indexing, the end index is included here. For instance, if we index a list as a[:5] then it
would return the values at indices - [0,1,2,3,4]. But here the index ‘1949-05-01" was included in the
output.

2. The indices have to be sorted for ranges to work. If you randomly shuffle the index, this won’t work.

Consider another instance where you need all the values of the year 1949. This can be done as:

ts['1949']
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The month part was omitted. Similarly if you all days of a particular month, the day part can be omitted.

Now, lets move onto the analyzing the TS.

How to Check the Stationarity of a Time Series?

A TS is said to be stationary if its statistical properties such as mean, variance remain constant over time.
But why is it important? Most of the TS models work on the assumption that the TS is stationary.
Intuitively, we can sat that if a TS has a particular behaviour over time, there is a very high probability that it
will follow the same in the future. Also, the theories related to stationary series are more mature and easier
to implement as compared to non-stationary series.

Stationarity is defined using very strict criterion. However, for practical purposes we can assume the series
to be stationary if it has constant statistical properties over time, ie. the following:

1. constant mean
2. constant variance

3. an autocovariance that does not depend on time.

I'll skip the details as it is very clearly defined in this article. Lets move onto the ways of testing
stationarity. First and foremost is to simple plot the data and analyze visually. The data can be plotted
using following command:

plt.plot(ts)

It is clearly evident that there is an overall increasing trend in the data along with some seasonal
variations. However, it might not always be possible to make such visual inferences (we'll see such cases
later). So, more formally, we can check stationarity using the following:

1. Plotting Rolling Statistics: We can plot the moving average or moving variance and see if it varies with
time. By moving average/variance | mean that at any instant ‘t’, we'll take the average/variance of the
last year, i.e. last 12 months. But again this is more of a visual technique.

2. Dickey-Fuller Test: This is one of the statistical tests for checking stationarity. Here the null
hypothesis is that the TS is non-stationary. The test results comprise of a Test Statistic and
some Critical Values for difference confidence levels. If the ‘Test Statistic’ is less than the ‘Critical
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Value’, we can reject the null hypothesis and say that the series is stationary. Refer this article for
details.

These concepts might not sound very intuitive at this point. | recommend going through the prequel
article. If you're interested in some theoretical statistics, you can refer Introduction to Time Series and
Forecasting by Brockwell and Davis. The book is a bit stats-heavy, but if you have the skill to read-
between-lines, you can understand the concepts and tangentially touch the statistics.

Back to checking stationarity, we'll be using the rolling statistics plots along with Dickey-Fuller test results
a lot so | have defined a function which takes a TS as input and generated them for us. Please note that
I've plotted standard deviation instead of variance to keep the unit similar to mean.

from statsmodels.tsa.stattools import adfuller def test_stationarity(timeseries): #Determing rolling
statistics rolmean = pd.rolling_mean(timeseries, window=12) rolstd = pd.rolling_std(timeseries, window=12)
#Plot rolling statistics: orig = plt.plot(timeseries, color='blue',6 label="'0Original') mean = plt.plot(rolmean,
color='red"', label="'Rolling Mean') std = plt.plot(rolstd, color="'black', label = 'Rolling Std')
plt.legend(loc="best') plt.title('Rolling Mean & Standard Deviation') plt.show(block=False) #Perform Dickey-
Fuller test: print 'Results of Dickey-Fuller Test:' dftest = adfuller(timeseries, autolag='AIC') dfoutput =
pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used',6 'Number of Observations Used']) for

key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value print dfoutput

The code is pretty straight forward. Please feel free to discuss the code in comments if you face
challenges in grasping it.

Let's run it for our input series:

test_stationarity(ts)

Though the variation in standard deviation is small, mean is clearly increasing with time and this is not a
stationary series. Also, the test statistic is way more than the critical values. Note that the signed values
should be compared and not the absolute values.
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Next, we'll discuss the techniques that can be used to take this TS towards stationarity.

How to Make a Time Series Stationary?

Though stationarity assumption is taken in many TS models, almost none of practical time series are
stationary. So statisticians have figured out ways to make series stationary, which we'll discuss now.
Actually, its almost impossible to make a series perfectly stationary, but we try to take it as close as
possible.

Lets understand what is making a TS non-stationary. There are 2 major reasons behind non-stationaruty of
aTS:

1. Trend - varying mean over time. For eg, in this case we saw that on average, the number of passengers
was growing over time.

2. Seasonality - variations at specific time-frames. eg people might have a tendency to buy cars in a
particular month because of pay increment or festivals.

The underlying principle is to model or estimate the trend and seasonality in the series and remove those
from the series to get a stationary series. Then statistical forecasting techniques can be implemented on
this series. The final step would be to convert the forecasted values into the original scale by applying
trend and seasonality constraints back.

Note: I'll be discussing a number of methods. Some might work well in this case and others might not. But
the idea is to get a hang of all the methods and not focus on just the problem at hand.

Let's start by working on the trend part.

Estimating & Eliminating Trend

One of the first tricks to reduce trend can be transformation. For example, in this case we can clearly see
that the there is a significant positive trend. So we can apply transformation which penalize higher values
more than smaller values. These can be taking a log, square root, cube root, etc. Lets take a log transform
here for simplicity:

ts_log = np.log(ts) plt.plot(ts_log)
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In this simpler case, it is easy to see a forward trend in the data. But its not very intuitive in presence of
noise. So we can use some techniques to estimate or model this trend and then remove it from the series.
There can be many ways of doing it and some of most commonly used are:

1. Aggregation - taking average for a time period like monthly/weekly averages
2. Smoothing - taking rolling averages

3. Polynomial Fitting — fit a regression model

| will discuss smoothing here and you should try other techniques as well which might work out for other
problems. Smoothing refers to taking rolling estimates, i.e. considering the past few instances. There are
can be various ways but | will discuss two of those here.

Moving Average

In this approach, we take average of ‘k’ consecutive values depending on the frequency of time series. Here
we can take the average over the past 1 year, i.e. last 12 values. Pandas has specific functions defined for
determining rolling statistics.

moving_avg = pd.rolling_mean(ts_log,12) plt.plot(ts_log) plt.plot(moving_avg, color='red')

The red line shows the rolling mean. Lets subtract this from the original series. Note that since we are
taking average of last 12 values, rolling mean is not defined for first 11 values. This can be observed as:

ts_log_moving_avg_diff = ts_log - moving_avg ts_log_moving_avg_diff.head(12)


https://www.analyticsvidhya.com/wp-content/uploads/2016/02/10.-smooth-1.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/02/10.5-missing-rolling.png

Notice the first 11 being Nan. Lets drop these NaN values and check the plots to test stationarity.

ts_log_moving_avg_diff.dropna(inplace=True) test_stationarity(ts_log_moving_avg_diff)

This looks like a much better series. The rolling values appear to be varying slightly but there is no specific
trend. Also, the test statistic is smaller than the 5% critical values so we can say with 95% confidence that
this is a stationary series.

However, a drawback in this particular approach is that the time-period has to be strictly defined. In this
case we can take yearly averages but in complex situations like forecasting a stock price, its difficult to
come up with a number. So we take a ‘weighted moving average’ where more recent values are given a
higher weight. There can be many technique for assigning weights. A popular one is exponentially
weighted moving average where weights are assigned to all the previous values with a decay factor. Find
details here. This can be implemented in Pandas as:

expwighted_avg = pd.ewma(ts_log, halflife=12) plt.plot(ts_log) plt.plot(expwighted_avg, color='red')
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Note that here the parameter ‘halflife’ is used to define the amount of exponential decay. This is just an
assumption here and would depend largely on the business domain. Other parameters like span and center
of mass can also be used to define decay which are discussed in the link shared above. Now, let's remove
this from series and check stationarity:

ts_log_ewma_diff = ts_log - expwighted_avg test_stationarity(ts_log_ewma_diff)

This TS has even lesser variations in mean and standard deviation in magnitude. Also, the test statistic is
smaller than the 1% critical value, which is better than the previous case. Note that in this case, there will
be no missing values as all values from starting are given weights. So it'll work even with no previous
values.

Eliminating Trend and Seasonality


https://www.analyticsvidhya.com/wp-content/uploads/2016/02/12.-smooth-2.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/02/3.-dfuller-smooth-2.png

The simple trend reduction techniques discussed before don't work in all cases, particularly the ones with
high seasonality. Let’s discuss two ways of removing trend and seasonality:

1. Differencing - taking the difference with a particular time lag

2. Decomposition — modeling both trend and seasonality and removing them from the model

Differencing

One of the most common methods of dealing with both trend and seasonality is differencing. In this
technique, we take the difference of the observation at a particular instant with that at the previous
instant. This mostly works well in improving stationarity. First-order differencing can be done in Pandas as:

ts_log_diff = ts_log - ts_log.shift() plt.plot(ts_log_diff)

This appears to have reduced trend considerably. Lets verify using our plots:

ts_log_diff.dropna(inplace=True) test_stationarity(ts_log_diff)
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We can see that the mean and std variations have small variations with time. Also, the Dickey-Fuller test
statistic is less than the 10% critical value, thus the TS is stationary with 90% confidence. We can
also take second or third order differences which might get even better results in certain applications. |
leave it to you to try them out.

Decomposing

In this approach, both trend and seasonality are modeled separately and the remaining part of the series is
returned. I'll skip the statistics and come to the results:

from statsmodels.tsa.seasonal import seasonal_decompose decomposition = seasonal_decompose(ts_log) trend =
decomposition.trend seasonal = decomposition.seasonal residual = decomposition.resid plt.subplot(411)
plt.plot(ts_log, label='Original') plt.legend(loc='best') plt.subplot(412) plt.plot(trend, label='Trend')
plt.legend(loc="'best') plt.subplot(413) plt.plot(seasonal, label="'Seasonality') plt.legend(loc="'best')
plt.subplot(414) plt.plot(residual, label='Residuals') plt.legend(loc='best') plt.tight_layout()
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Here we can see that the trend, seasonality are separated out from data and we can model the residuals.
Lets check stationarity of residuals:

ts_log_decompose = residual ts_log_decompose.dropna(inplace=True) test_stationarity(ts_log_decompose)

The Dickey-Fuller test statistic is significantly lower than the 1% critical value. So this TS is very close to
stationary. You can try advanced decomposition techniques as well which can generate better results.
Also, you should note that converting the residuals into original values for future data in not very intuitive
in this case.

Forecasting a Time Series

We saw different techniques and all of them worked reasonably well for making the TS stationary. Lets
make model on the TS after differencing as it is a very popular technique. Also, its relatively easier to add
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noise and seasonality back into predicted residuals in this case. Having performed the trend and
seasonality estimation techniques, there can be two situations:

1. A strictly stationary series with no dependence among the values. This is the easy case wherein we
can model the residuals as white noise. But this is very rare.

2. A series with significant dependence among values. In this case we need to use some statistical
models like ARIMA to forecast the data.

Let me give you a brief introduction to ARIMA. | won’t go into the technical details but you should
understand these concepts in detail if you wish to apply them more effectively. ARIMA stands for Auto-
Regressive Integrated Moving Averages. The ARIMA forecasting for a stationary time series is nothing but
a linear (like a linear regression) equation. The predictors depend on the parameters (p,d,q) of the ARIMA
model:

1. Number of AR (Auto-Regressive) terms (p): AR terms are just lags of dependent variable. For instance
if pis 5, the predictors for x(t) will be x(t-1)....x(t-5).

2. Number of MA (Moving Average) terms (q): MA terms are lagged forecast errors in prediction
equation. For instance if q is 5, the predictors for x(t) will be e(t-1)....e(t-5) where e(i) is the difference

iTh

between the moving average at i*" instant and actual value.

3. Number of Differences (d): These are the number of nonseasonal differences, i.e. in this case we took
the first order difference. So either we can pass that variable and put d=0 or pass the original variable
and put d=1. Both will generate same results.

An importance concern here is how to determine the value of ‘p’ and ‘q’. We use two plots to determine
these numbers. Lets discuss them first.

1. Autocorrelation Function (ACF): It is a measure of the correlation between the the TS with a lagged
version of itself. For instance at lag 5, ACF would compare series at time instant ‘t1°.."t2" with series at
instant ‘t1-5"../t2-5’ (t1-5 and t2 being end points).

2. Partial Autocorrelation Function (PACF): This measures the correlation between the TS with a lagged
version of itself but after eliminating the variations already explained by the intervening comparisons.
Eg at lag 5, it will check the correlation but remove the effects already explained by lags 1 to 4.

The ACF and PACF plots for the TS after differencing can be plotted as:

#ACF and PACF plots: from statsmodels.tsa.stattools import acf, pacf

lag_acf = acf(ts_log_diff, nlags=20) lag_pacf = pacf(ts_log_diff, nlags=20, method='ols')

#Plot ACF: plt.subplot(121) plt.plot(lag_acf) plt.axhline(y=0,linestyle="--",color="'gray')
plt.axhline(y=-1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color="gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle="'--"',color="'gray') plt.title('Autocorrelation

Function')

#Plot PACF: plt.subplot(122) plt.plot(lag_pacf) plt.axhline(y=0,1linestyle="'--"',color="'gray')
plt.axhline(y=-1.96/np.sqrt(len(ts_log_diff)),linestyle='--',color="gray')
plt.axhline(y=1.96/np.sqrt(len(ts_log_diff)),linestyle="'--",color="'gray') plt.title('Partial Autocorrelation

Function') plt.tight_layout()



In this plot, the two dotted lines on either sides of 0 are the confidence interevals. These can be used to
determine the ‘p’ and ‘q’ values as:

1. p — The lag value where the PACF chart crosses the upper confidence interval for the first time. If you
notice closely, in this case p=2.

2. q — The lag value where the ACF chart crosses the upper confidence interval for the first time. If you
notice closely, in this case q=2.

Now, lets make 3 different ARIMA models considering individual as well as combined effects. | will also
print the RSS for each. Please note that here RSS is for the values of residuals and not actual series.

We need to load the ARIMA model first:

from statsmodels.tsa.arima_model import ARIMA

The p,d,q values can be specified using the order argument of ARIMA which take a tuple (p,d,q). Let model
the 3 cases:

AR Model
model = ARIMA(ts_log, order=(2, 1, 0)) results_AR = model.fit(disp=-1) plt.plot(ts_log_diff)
plt.plot(results_AR.fittedvalues, color="red") plt.title('RSS: %.4F'% sum((results_AR.fittedvalues-

ts_log_diff)**2))
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MA Model

model = ARIMA(ts_log, order=(0, 1, 2)) results_MA = model.fit(disp=-1) plt.plot(ts_log_diff)
plt.plot(results_MA.fittedvalues, color="red") plt.title('RSS: %.4F'% sum((results_MA.fittedvalues-
ts_log_diff)**2))

Combined Model

model = ARIMA(ts_log, order=(2, 1, 2)) results_ARIMA = model.fit(disp=-1) plt.plot(ts_log_diff)
plt.plot(results_ARIMA.fittedvalues, <color='red') plt.title('RSS: %.4f'% sum((results_ARIMA.fittedvalues-
ts_log_diff)**2))
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Here we can see that the AR and MA models have almost the same RSS but combined is significantly
better. Now, we are left with 1 last step, i.e. taking these values back to the original scale.

Taking it back to original scale

Since the combined model gave best result, lets scale it back to the original values and see how well it
performs there. First step would be to store the predicted results as a separate series and observe it.

predictions_ARIMA_diff = pd.Series(results_ARIMA.fittedvalues, copy=True) print predictions_ARIMA_diff.head()

Notice that these start from '1949-02-01" and not the first month. Why? This is because we took a lag by 1
and first element doesn’t have anything before it to subtract from. The way to convert the differencing to
log scale is to add these differences consecutively to the base number. An easy way to do it is to first
determine the cumulative sum at index and then add it to the base number. The cumulative sum can be
found as:

predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum() print predictions_ARIMA_diff_cumsum.head()


https://www.analyticsvidhya.com/wp-content/uploads/2016/02/20.-model-both.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/02/21.-check-output.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/02/22.-cumsum.png

You can quickly do some back of mind calculations using previous output to check if these are correct.
Next we've to add them to base number. For this lets create a series with all values as base number and
add the differences to it. This can be done as:

predictions_ARIMA_log = pd.Series(ts_log.ix[0], index=ts_log.index) predictions_ARIMA_log =

predictions_ARIMA_log.add(predictions_ARIMA_diff_cumsum,fill value=0) predictions_ARIMA_log.head()

Here the first element is base number itself and from thereon the values cumulatively added. Last step is
to take the exponent and compare with the original series.

predictions_ARIMA = np.exp(predictions_ARIMA_log) plt.plot(ts) plt.plot(predictions_ARIMA) plt.title('RMSE:
%.4f'% np.sqrt(sum((predictions_ARIMA-ts)**2)/len(ts)))

That’s all in Python. Well, let’s learn how to implement a time series forecast in R.

Time Series Forecastin R

Step 1: Reading data and calculating basic summary

#Installing packages and calling out the libraries
install.packages("summarytools")
install.packages("tseries")
install.packages("forecast")

library(forecast)

library(ggplot2)

library(tseries)

library(summarytools)
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#Reading the Airpaseengers data


https://www.analyticsvidhya.com/wp-content/uploads/2016/02/23.-add-cumsum.png
https://www.analyticsvidhya.com/wp-content/uploads/2016/02/24.-final-plot.png

11 data("AirPassengers")

12 tsdata<-AirPassengers

13 #Identifying the class of data

14 class(tsdata)

15 #0bservations of the time series data
16 tsdata

17  #Summary of the data and missi

18 dfSummary(tsdata)

view raw
Importing_ts.R hosted with ® by GitHub

Output

class(tsdata) "ts" > #Observations of the time series data > tsdata Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec 1949 112 118 132 129 121 135 148 148 136 119 104 118 1950 115 126 141 135 125 149 170 170 158 133 114
140 1951 145 150 178 163 172 178 199 199 184 162 146 166 1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201 1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278 1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336 1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405 1960 417 391 419 461 472 535 622 606 508 461 390 432 >
#Summary of the data and missi tsdata was converted to a data frame Data Frame Summary tsdata Dimensions: 144
X 1 DUPlicates: 26 - - - - - o s o s o o o o o o e e oo
—————————— No Variable Stats / Values Freqs (% of Valid) Graph Valid Missing ---- =---------- --oooo-
—————————————————————————————————————————————————————————————— -- 1 tsdata Mean (sd) : 280.3 (120) 118
distinct values . : . 144 0 [ts] min < med < max: Start: 1949-01 : : . . : (100%) (0%) 104 < 265.5 < 622 End

1960-12 : : : : : IQR (CV) : 180.5 (0.4) : @ @ @ @ 1 1 1 lll bl L e e e e e oo

Step 2: Checking the cycle of Time Series Data and Plotting the Raw Data

#Check the cycle of data and plot the raw data
as.data.frame(tsdata)

cycle(tsdata)
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plot(tsdata, ylab="Passengers (1000s)", type="o")

view raw
cycle_ts.R hosted with ® by GitHub

Output

cycle(tsdata) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1949 1 2 3 4 5 6 7 8 9 10 11 12 1950 1 2 3 4 5
6 78 9 10 11 12 1951 1 2 3 45 6 7 8 9 10 11 12 1952 1 2 3 45 6 7 8 9 10 11 12 1953 1 2 3 45 6 7 8 9 10 11
12 1954 1 2 3 45 6 7 8 9 10 11 12 1955 1 2 3 45 6 7 8 9 10 11 12 1956 1 2 3 4 5 6 7 8 9 10 11 12 1957 1 2 3
456 7 8 9 10 11 12 1958 1 2 3 4 5 6 7 8 9 10 11 12 1959 1 2 3 4 5 6 7 8 9 10 11 12 1960 1 2 3 4 5 6 7 8 9
10 11 12


https://gist.github.com/Harshit1694/70e88bb3daa681aa3e34d7413d75ca0a/raw/c9174ce4092bc1fdd729c136c3d6fa69dd41ef0e/Importing_ts.R
https://gist.github.com/Harshit1694/ebd831e9196de12602dd41f920e3df3c/raw/57c2280380d98c18be43408af81563c4c669183b/cycle_ts.R
https://gist.github.com/Harshit1694/70e88bb3daa681aa3e34d7413d75ca0a#file-importing_ts-r
https://github.com/
https://gist.github.com/Harshit1694/ebd831e9196de12602dd41f920e3df3c#file-cycle_ts-r
https://github.com/

Step 3: Decomposing the time series data

1 #Decomposing the data into its trend, seasonal, and random error components
2 tsdata_decom <- decompose(tsdata, type = "multiplicative")
3 plot(tsdata_decom)

view raw
decom_ts.R hosted with ® by GitHub

Output

Step 4: Test the stationarity of data
#Testing the stationarity of the data
#Augmented Dickey-Fuller Test

adf.test(tsdata)

#Autocorrelation test

autoplot(acf(tsdata,plot=FALSE))+ labs(title="Correlogram of Air Passengers data")

tsdata_decom$random
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autoplot(acf(tsdata_decom$random[7:138],plot=FALSE))+ labs(title="Correlogram of Air Passengers Random Component")

view raw
stat_ts.R hosted with ® by GitHub


https://gist.github.com/Harshit1694/d93bd9f73087662b7724276b73d63e38/raw/4b43c7013518b46a622d42a57a26cbaad21bd178/decom_ts.R
https://gist.github.com/Harshit1694/f8cfd3565c3c29bfbc2e86d711e3c409/raw/1ec21aa3cfecf5663d7f9766ca64457e83772fec/stat_ts.R
https://gist.github.com/Harshit1694/d93bd9f73087662b7724276b73d63e38#file-decom_ts-r
https://github.com/
https://gist.github.com/Harshit1694/f8cfd3565c3c29bfbc2e86d711e3c409#file-stat_ts-r
https://github.com/

Output

Augmented Dickey-Fuller Test data: tsdata Dickey-Fuller = -7.3186, Lag order = 5, p-value = 0.01 alternative

hypothesis: stationary

the p-value is 0.01 which is <0.05, therefore, we reject the null hypothesis and hence time series is
stationary.

The maximum lag is at 1 or 12 months, indicates a positive relationship with the 12-month cycle.

Autoplot the random time series observations from 7:138 which exclude the NA values

Step 5: Fitting the model

1 #Fitting the model
2 #Linear model

3 autoplot(tsdata) + geom_smooth(method="1m")+ labs(x ="Date", y = "Passenger numbers (1000's)", title="Air Passengers dat



#ARIMA Model
arimats <- auto.arima(tsdata)

arimats
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ggtsdiag(arimats)

view raw
fit_ts.R hosted with *® by GitHub

Output

Series: tsdata ARIMA(2,1,1)(0,1,0)[12] Coefficients: arl ar2 mal 0.5960 0.2143 -0.9819 s.e. 0.0888 0.0880
0.0292 sigman2 estimated as 132.3: log likelihood=-504.92 AIC=1017.85 AICc=1018.17 BIC=1029.35

Step 6: Forecasting

1 #Forecast of Arima Model
2 fts <- forecast(arimats, level = c(95))
3 autoplot(fts)

view raw
forecast_ts.R hosted with ® by GitHub


https://gist.github.com/Harshit1694/8e32d9cbfc7337e9650588e6d289539b/raw/f5231b99caadeb803b9c39609c13c72f4240a6e2/fit_ts.R
https://gist.github.com/Harshit1694/2a0f0426e25cda8ee7101be829971b9a/raw/567bf5032a0d842c6bc4c328316f2684b327a24b/forecast_ts.R
https://gist.github.com/Harshit1694/8e32d9cbfc7337e9650588e6d289539b#file-fit_ts-r
https://github.com/
https://gist.github.com/Harshit1694/2a0f0426e25cda8ee7101be829971b9a#file-forecast_ts-r
https://github.com/

Output

Finally we have a forecast at the original scale. Not a very good forecast | would say but you got the idea
right? Now, | leave it upto you to refine the methodology further and make a better solution.

Sample Projects

Now, its time to take the plunge and actually play with some other real datasets. So are you ready to take
on the challenge? Test the techniques discussed in this post and accelerate your learning in Time Series
Analysis with the following Practice Problems:

Practice Problem: Food Demand Forecast the demand of meals for a meal
Forecasting_Challenge delivery company

Forecast the passenger traffic for an intra-

Practice Problem: Time Series Analyses . -
city rail system

Conclusion


https://datahack.analyticsvidhya.com/contest/genpact-machine-learning-hackathon-1/?utm_source=complete-tutorial-learn-data-science-python-scratch-2&utm_medium=blog
https://datahack.analyticsvidhya.com/contest/genpact-machine-learning-hackathon-1/?utm_source=time-series-forecasting-codes-python&utm_medium=blog
https://datahack.analyticsvidhya.com/contest/practice-problem-time-series-2/?utm_source=time-series-forecasting-codes-python&utm_medium=blog

Through this article | have tried to give you a standard approach for solving time series problem. This
couldn’t have come at a better time as today is our Mini DataHack which will challenge you to solve a
similar problem. We've covered concepts of stationarity, how to take a time series closer to stationarity and
finally forecasting the residuals. It was a long journey and | skipped some statistical details which |
encourage you to refer using the suggested material. If you don’t want to copy-paste, you can download
the iPython notebook with all the codes from my GitHub repository.

Frequently Asked Questions

Q1. What are the four 4 main components of a time series?
A. The four main components of a time series are Trend, Seasonal, Cyclical, and Irregular.
Q2. What is an example of a time series forecast?

A. Weather forecasts, stock market predictions, and predicting sales trends are some common examples of
time series forecasts.

Q3. What is Time Series Forecasting?

A. Time series forecasting is the technique of predicting future values by studying existing or past data.
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