Quite often I come across situations where people end up making wrong inferences based on half baked analysis. Or when people force fit data to what they already believe. A popular quote on the subject says:
If you torture the data long enough, it will confess.
– Ronald Coase, Economist
I personally disagree with the quote and firmly believe the other way “If you slice and dice the data in unbiased manner, it will reveal the truth.”
Having said that, I am aware of situations and people who intentionally or non-intentionally end up making wrong inferences. Following is an example which brings out one such case:
[stextbox id=”section”]Example of a typical error[/stextbox]
A BFSI Organization had come up with potentially ground breaking idea. It looked brilliant on paper and people internally were excited about implementing it. Since it was a strategic shift, the team decided to run a pilot in selected locations. First reads from the pilot came out after 5 months of implementation. The MIS team analyzed the data and quickly concluded success of pilot basis following graph:
Almost any metric you look at told same story unanimously. The whole project team was gung-ho about the success of the project and were getting ready to implement the strategy Pan India.
This is when a wise analyst entered and asked to look at pre and post scenario together before concluding any thing. This graph had a different story to tell:
The entire story changed after looking at this graph. A clear winner strategy suddenly turned into a loser! Imagine the loss company would have suffered, had it implemented new strategy Pan India. Actually, locations were nominated by Regional Directors and they chose locations where they had higher confidence of good implementation (hence they had better performance before hand).
The purpose of this post is to bring out some of the common mistakes analysts make and how to avoid them:
[stextbox id=”section”]1. Drawing Inferences only basis mean (without removing Outliers)[/stextbox]
If you believe that any event does not represent a normal outcome, you need to filter it out from your analysis. For example, if a friend of the CEO or a member of Board of Directors invests a big amount through one of your products, that should be removed from data. Typically used definition to identify outliers is multiple of standard definition (2x or 3x).
To put numbers on this example, let us say Sales size for your product varies between Rs. 100 – 10,000 and there are 500 such cases such that the average works out at Rs. 5,000. If there is one sale of Rs. 5,00,00,000, the average all of a sudden becomes ~ Rs. 1,05,000. If you don’t get this kind of Sale every month, you will end up concluding that average sales size has gone down.
Look at another example why looking at mean might be misleading:
Following practices would help you to make sure you are not drawing wrong inferences by looking at mean:
[stextbox id=”section”]2. Comparing different sets of population, segment or cluster[/stextbox]
The example at the start of the article is perfect example of this. This error can happen whenever you do not use non-random way to distribute the population. Whenever you do so, please make sure that populations are similar on all the key parameters.
How to avoid this bias / error?
It is best to stay away from comparing non-random distributed population. If you need to do so due to logistic & resource constraints, compare Pre vs. Post before you arrive at any conclusion.
[stextbox id=”section”]3. Drawing inferences on thin data (and extrapolating it)[/stextbox]
This happens when you want to bring out insights for every possible segment of data. In doing so, you end up with segments or clusters which have small population and the reads may not be statistically significant (or will contain a lot of noise). Following is another example of this kind of error:
How to avoid drawing inferences based on thin data?
Always plot confidence intervals to the values to calculate or extrapolate. This will give you a sense of whether the extrapolation is accurate or erroneous. Usual practice is to look at 90% confidence intervals before reaching any conclusion.
[stextbox id=”section”]4. Wrong applications of the inferences[/stextbox]
It is human tendency to generalize insights and findings. You extend or apply a learning based on different set of population or circumstances to a different set. Those insights may or may not be relevant. If your credit scoring model was based on a population coming from a particular channel (e.g. Branches), you can not apply it to a different set (e.g. Online). You will end up getting things wrong. Here is another example which brings out this error:
How to avoid wrong application of inferences?
Always check if you are extending your models to a population which it has not seen it past. If you are aware of any changes, continue to monitor the population on key variables (e.g. for credit scoring model, you need to monitor age, income, unemployment rate, credit file match % etc.)
If any of these distributions are different compared to the population on which you are basing your learnings, think again!
[stextbox id=”section”]5. Correlation does not mean Causation[/stextbox]
Correlation is a tool every analyst uses on a frequent basis. The biggest caution while using it is that it should not be treated as causation. If two events are happening close to each other, it is not necessary that they are happening because of one another. For example, if my age is increasing with time and my brother’s age is also increasing with time, it does not mean my age is driving his. Picture below shows another such example:
How to avoid this error?
Just treat correlation as correlation and not causation.
These were the 5 most common errors in my experience. The more you put your thought in spotting these errors, the better you become at it. Initially, I used to make these errors myself. Now, I can spot them effortlessly.
If you know of any other errors people make, please feel free to add your comments below.
Image credit: All cartoons taken from XKCD.com
Kunal Jain is the Founder and CEO of Analytics Vidhya, one of the world's leading communities of Al professionals. With over 17 years of experience in the field, Kunal has been instrumental in shaping the global Al landscape. His expertise spans diverse markets, from developed economies like the UK to emerging ones like India, where he has successfully led and delivered complex data-driven solutions. As a recognized thought leader, Kunal has empowered countless individuals to realize their Al ambitions through his visionary approach to Al education and community building. Before founding Analytics Vidhya, Kunal earned both his undergraduate and postgraduate degrees from IIT Bombay and held key roles at Capital One and Aviva Life Insurance across multiple geographies. His passion lies at the intersection of analytics, Al, and fostering a thriving community of data science professionals.
Top 100 Data Science Interview Questions & ...
8 Must Know Spark Optimization Tips for Data En...
Common data preparation mistakes and how to avo...
How to implement an analytics solution for a bu...
13 Tips to make you awesome in Data Science / A...
13 Common Mistakes Amateur Data Scientists Make...
Five habits of highly successful analysts
The importance of context for an analyst!
Being paranoid about data accuracy!
How to become an analytics rockstar?
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Liked the illustrations in cartoons....the causation- correlation error along with non-biased sample selection are the 2 most common ones in my experience
Hi Kunal, The backward approach whether the campaign actually did benefit or not was quite a learning. Thanks
Great post - = I have witnessed the above mistakes and many more. Unfortunately, the creator of said mistake will often argue passionately in favor of the mistake to decision makers, whom often are less qualified to assess the veracity of the analysis, and they go .