As a manager, you face cost vs. quality / accuracy trade-offs on a regular basis. This can be in the form of any of these questions:
If you are a decision making authority, these dilemma arise quite often. Sadly, not many people have a framework to answer these questions. They end up taking these decision based on their gut or change their stand multiple times in the process.
If you do not put a framework around these problems, your decision making is dependent on how the problem is narrated to you or how you think about it at that instance. This also leads to change in stand / decisions multiple times. In this article, I have laid out a simple framework to answer these questions and have illustrated its usage through a case study.
[stextbox id=”section”] Framework: [/stextbox]
The framework for these situations is fairly simple. As a stand alone decision, you invest resources until the value created by these investments is higher than the cost incurred.
On the other hand, If there are multiple opportunities with limited resources, you invest in the projects, which give you the highest ROI.
[stextbox id=”section”] Case study – Background : [/stextbox]
You are the general manager of FUORD, an automobile company in India. FUORD has recently launched a model in India and China called Bistra. The engine of this model has been outsourced to two companies, namely X and Y (referred as vendor after this). Both X and Y make an identical design of the engines. However, 10 out of every 100 engines from Vendor X are faulty in working whereas 1 out of 100 engines of Y is faulty in working. India and China import exact the same number of engines. FUORD has a policy of not revealing the vendor name while sending the engines to any country. Hence, in any month India has an equal probability of receiving either engines manufactured by X or by Y.
[stextbox id=”section”] Faulty engine found :: [/stextbox]
After 10 months of launch of Bistra, you found one of the engines is of wrong design. A fault in design is against the code of conduct of FUORD and the contract with this supplier needs to be terminated immediately. But the fix is that neither you nor anyone in the firm is sure whether this engine was supplied by X or Y. Here are various costs involved in the process:
Should you test an engine for its working, if it is faulty or not before terminating the supply from a vendor?
Note: Fault in design and fault in working of the engine are two independent events.
[stextbox id=”section”]The play of probabilities: [/stextbox]
What is the probability that the lot in India in the 10th month of the launch came from X? Obviously 0.5, as there are only two options of choosing a vendors and both equally likely. Can you take a decision to terminate any of the two vendors based on your intuition? Probably not. What do you do in such situations? Collect more information.
But is the collection of information worth the cost which you will incur to test an engine. Let’s try to find out the expected costs involved.
[stextbox id=”grey”]Event X : The lot in the 10th month is from X
Event Y : The lot in the 10th month is from Y
Event F: The chosen engine is faulty
Event P: The chosen engine is perfect
P(X) = P(Y) = 0.5
P(F/X ) = Probability of the engine being faulty given that the lot is from X = 0.1 (Given)
P(F/Y ) = Probability of the engine being faulty given that the lot is from Y = 0.01 (Given)
[/stextbox]
We already know that
[stextbox id=”grey”]
P(F) = Probability of the engine being faulty
= P(F∩X) + P(F∩Y)
= P(F/X)*F(X) + P(F/Y)*P(Y)
= 0.5*(0.1 + 0.01) = 0.055
P(X/F) = Probability of lot being from X given that the first random engine chosen is faulty
= P(X∩F) /P(F)
= 0.5*0.1/0.055 = 0.909
P(P) = Probability of the engine being perfect = P(P∩X) + P(P∩Y)
= P(P/X)*P(X) + P(P/Y)*P(Y)
= 0.5*(0.9 + 0.99) = 0.945
P(X/P) = Probability of lot being from X given that the first random engine chosen is perfect
= P(X∩P) /P(P)
= 0.5*0.9/0.945 = 0.47
P(Y/P) = 0.53
[/stextbox] K : Event of choosing the correct vendor after the first engine assessment.[stextbox id=”grey”]
P(K) = P(K∩F) + P(K∩P)
= P(F) * P(K/F) + P(P)*P(K/P)
= 0.055*0.909 + 0.945*0.53
= 0.05 + 0.5 = 0.55
Now let’s make some cost estimations.
Expected value of cost if engine assessment is not done= A = $1MM * 0.5 = $500 k
Expected value of cost if the engine assessment is done = B = $40 k + 0.45 *$1MM = $490k
[/stextbox]
Clearly A > B and, hence, assessment of first engine is totally justified. Also, on a stand alone basis, we were able to reduce cost of wrong assessment by $10 k, by investing $40 k
[stextbox id=”section”] End Notes : [/stextbox]
In this part of the case study, we took a very simple case with a single step of processing. Say, you completed the first test and found the engine to be perfect. Now you wish to check if the second test is cost effective or not. Make cases and find the expected cost of test and cost saved by the test. Make the comparison and write in the box below your recommendation to do the second test or not?
Did you find the article useful? Share with us how you would have approached making strategies mentioned in the article. Do let us know your thoughts about this article in the box below.
Tavish Srivastava, co-founder and Chief Strategy Officer of Analytics Vidhya, is an IIT Madras graduate and a passionate data-science professional with 8+ years of diverse experience in markets including the US, India and Singapore, domains including Digital Acquisitions, Customer Servicing and Customer Management, and industry including Retail Banking, Credit Cards and Insurance. He is fascinated by the idea of artificial intelligence inspired by human intelligence and enjoys every discussion, theory or even movie related to this idea.
An analytics interview case study
Limitations of Pre vs. Post analysis and Import...
Learn Analytics using a business case study : P...
Beginner’s guide to Design of Experiments...
Questions to ask while designing A/B (or multi-...
Common mistakes analysts make during analysis a...
Common data preparation mistakes and how to avo...
Learn Analytics using a business case study : P...
5 Simple manipulations to extract maximum infor...
Operational Analytics Case study For Freshers: ...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
great, clarified my understanding about probability. plz keep providing this type of stuff. thank you.