While tracking my activities is obviously good, what makes it a great product is the eco-system it provides. Every day, I am competing with my friends to finish those extra steps and shed those extra kilos! We all challenge each other and buck up each other (sometimes in not so polite way as well) to make the group a fitter group!
Well, staying fit without an eco-system and learning new tools by yourself have a few common challenges:
So, in this post, I am sharing some best practices, I have learnt the hard way. I have undergone more than 50 open courses on Data Science across various platforms (including Coursera, edX, Udacity, SAS and several others) in last 18 months or so. I still sign up for most of the new courses which are floated.
One of the things, people get wrong is that they assume that entire course is for everyone to be undergone in same way. This is certainly not true. It is true that the creators of the courses try hard to make the courses as generic for the larger audience, but you still need to decide and define what you are looking for in each of these courses.
For example a course on machine learning would typically start by whetting your appetite about machine learning. If I was undergoing that course, I don’t need that section. So I’ll typically skip that section (P.S. It may be a good idea to do the exercises – more on this later).
Before you start the course, you should have following things defined:
This is where I think Fitbit does a fab job! You need to almost replicate it for MOOCs. Here is how I typically find them.
Mentors: Typically people in your network on Linkedin, experts in the fields, bloggers on the subject. Just reach out to them and ask for help as a mentor. I usually define the expectations from them up front as well – how much time I expect from them? what kind of questions / projects I would be working upon? I also try and offer them some thing in return – it could be research / tutorial for the blogger, a presentation for the expert presenting in a conference – you get the idea!
Buddies: Best is to reach out to people who are asking questions similar to the ones you have. Again, key is to interact with them before finalizing. You would want to have some one who is determined to finish the course, participating in projects and trying out things outside the templates in the MOOC. A good buddy can make or break your learnings from a MOOC. Once found, you should spend time discussing your understanding and doubts with these buddies.
Another practice, which can be of help in some places is to join meet-ups and find people with similar interest.
Discussions are probably one of the best way to learn while experimenting. There is a reason why every coder in this world spends time on stackoverflow to get his answers. We run a similar discussion portal for data science professionals here. All the MOOCs will typically have their own discussion portals as well. If they are active, you should fire your questions there as well.
While on the disucssion portal, offer what ever help you can to fellow participants.
Another way to showcase your learning, is to blog about them. This is how I started my journey! Once you have learnt about a particular technique – apply it to another dataset and come up with a solution. Then see what other people have done. iPython notebooks and Github can help immensely here. You just need a functional blog, where you can note what you are doing, what you are doing and how you are doing.
Projects and assignments are lifeline of all the data science MOOCs. If you miss on them, you miss on a lot of learning. Again, different platforms have different approach. Udacity, particularly is more project focused than others. So, make it a point to do all the assignments diligently – even if you think they are too easy / basic or they are too tough. Just have a go at it.
If you don’t add few numbers of an array or a list thinking that it is too easy, you will struggle with the data cleaning later in a project. If you can afford, you should also participate in a few competitions outside of the MOOC using the same tools you have learnt. So, if you have learn Logistic regression, apply that on Kaggle Titanic survivor competition.
There are 2 commitments you need to make in order to make sure you don’t drop out during the process. The first of them is to stay on the schedule. Finish the content and assignments on every week with in the week itself. Don’t play the catch up game, otherwise you will fall out the next week.
This might sound easier that what is actually is. You will need to put in a lot of efforts to make sure that you are on the top of the schedule.
The second commitment you should make to yourself is the minimum score you would achieve. This is a personal choice and should be in sync with the need of the course. If this is an important course, you should at least commit 70% score.
I hope this post would help numerous people who struggle to complete open courses. They are a fabulous platform to learn new skills. If you have any other tips and tricks to help MOOC learning, please feel free to share
On the lighter side, if you use a Fitbit to track your fitness – let’s compete!
Kunal Jain is the Founder and CEO of Analytics Vidhya, one of the world's leading communities of Al professionals. With over 17 years of experience in the field, Kunal has been instrumental in shaping the global Al landscape. His expertise spans diverse markets, from developed economies like the UK to emerging ones like India, where he has successfully led and delivered complex data-driven solutions. As a recognized thought leader, Kunal has empowered countless individuals to realize their Al ambitions through his visionary approach to Al education and community building. Before founding Analytics Vidhya, Kunal earned both his undergraduate and postgraduate degrees from IIT Bombay and held key roles at Capital One and Aviva Life Insurance across multiple geographies. His passion lies at the intersection of analytics, Al, and fostering a thriving community of data science professionals.
Nikhil Mishra’s Journey to Becoming a Kag...
7 tips to overcome your analytics learning hurd...
Learning Path for Developers & IT Professi...
A Primer on Getting Started with Data Science f...
Beginner’s Guide to Get a Data Science In...
Top 8 Kaggle Problems and Journey for 2024
Secrets from winners of our best ever Data Hack...
[Announcement] Launching Analytics Vidhya Certi...
The most comprehensive Data Science learning pl...
Nervous about your first data science project! ...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Hi Kunaal, I have been a regular follower of all of your posts. This is really a great piece of information written in this article as always. :) Thanks, Mohammed
And avoid what I would like to call MOOC gluttony. As appealing as the prospect is of signing up for a ton of courses, however earnest your interest may be, make sure that your life lets you take in as much of the course as possible. Doing few courses to the fullest is obviously better than doing a few exercises haphazardly in many courses. And even as I type this, I have to remind myself that I may have signed up for one too many. :)
Couldn't agree more
Exactly. I started a D-Sci specialization on Coursera by taking 2 courses at a time first two months. To be honest, first 3 or so were fairly easy. Since 5th module I'm taking only one at a time. All right, Python too, but in my defense, it is easy :) Anyway, I enjoyed some of the projects in 5th module, the time spent on them was more than useful. Usually there is more than enough time to do one module so I'm using it for some extra reading like StatLearning from Stanford. Starting on D-Sci, best move ever.
Hi Kunal I am currently a 5.2 yrs java resource . I want to move into Big data industry . Will dis be a rte career move ? If yes then which is the best place to learn Hadoop. Yr reply will help really. Thanks in advance,