How difficult is it to build a machine learning model on R or Python?
For beginners, it’s a Herculean task. For intermediates and experts, it’s just a matter of system capacity, problem understanding and a little time. Machine Learning models sometime face the issue of system incompatibility. Specially, when the data set is huge. In such cases, either the model takes longer to compute or the system crashes. Hence, for beginners and experts, the use of machine learning offers untimely challenges as well.
The good news is, machine learning has become a lot easier is last few years. As a beginner in machine learning, you can kick start your machine learning journey with Microsoft AzureML.
In this article, I’ll impart the necessary information to get you started with Machine Learning. Also, I’ve demonstrated a step by step tutorial to create a machine learning model using this software.
The speed of computation on Microsoft AzureML is comparable to R or Python. Hence, I’d say its worth trying for experts also.
AzureML is a GUI implementation of machine learning algorithm by Microsoft. Using this tool, implementation of such algorithm becomes exceptionally easy. If you are versed with E-Miner, than understanding this tool wouldn’t be difficult. I found this tool more resourceful and more graphical than E-Miner.
Let’s talk about various resources available with this tool.
Now, you know the potential of AzureML. Let’s now focus on the ways of using them. I will take up an easy to understand example to demonstrate the same. I’d suggest you to practice these steps with me to get a better understanding of this tutorial.
This is where you start – (By clicking on create a new experiment)
You get an empty experiment table :
Now you can choose a pallete:
Step 1 : Choose the Data set – This can be your sample data or you can upload also. In this tutorial, I’ll use “Breast Cancer data” from the in-built data sets. Just drag and drop this data in the main window.
Step 2: Choose a sampling tool: You can use search option from pallette to find the “split data” option. Place this below your data set and join.
You now see two touch points at the split data node. This basically means that you have two data sets ready to be taken forward. Towards the right side, you have the freedom to choose the type of split.
Step 3 : Train a machine learning model : You will need two nodes for this step. Firstly, it will be the type of model you want to build. Secondly, it will be the train model node. You can refer to the following figure :
You can still notice an exclamation mark in the train model node. It suggests that you need to specify the target variable. Let’s choose the target variable by clicking the mark. Now, you would see a window on right side. Now choose “Launch column slector”.
Here I have chosen “Class” as the target variable.
Step 4: Now you score: Refer to the following figure
Step 5: Finally evaluate
And RUN the model!
To visualize any node, you simply go to node, press right click, then click visualize.
Here is how visual data looks like in our case :
As you can see, Class variable only has two values as expected. This tool neatly draws distribution for each variable and allows you to check normality as well.
Here is how the scored model looks like :
As clearly visible, the estimated probabilities are mostly near zero and one. The cumulative distribution stays almost flat in between. Hence, the model outputs highly segregated values.
Finally, here is how the evaluation graphs look like :
As you can see, the model was highly efficient and it took me less than a minute to build and execute. The evaluation matrices computed is quite exhaustive and probably has the number you were looking for. I loved the tool because of the time efficiency and the user ease it provides.
Did you find this article helpful ? Share with us your experience with Azure ML. I’d love to hear you.
Tavish Srivastava, co-founder and Chief Strategy Officer of Analytics Vidhya, is an IIT Madras graduate and a passionate data-science professional with 8+ years of diverse experience in markets including the US, India and Singapore, domains including Digital Acquisitions, Customer Servicing and Customer Management, and industry including Retail Banking, Credit Cards and Insurance. He is fascinated by the idea of artificial intelligence inspired by human intelligence and enjoys every discussion, theory or even movie related to this idea.
Azure Machine Learning: A Step-by-Step Guide
Saving the Titanic Using Azure AutoML!
Learn to Build Powerful Machine Learning Models...
Deploy your ML Model as a Web Service in Micros...
The Power of Azure ML and Power BI: Dataflows a...
Getting started with Machine Learning in MS Exc...
Understand Machine Learning and Its End-to-End ...
Data Leakage And Its Effect On The Performance ...
Microsoft Azure Cognitive Services – API ...
Here are 9 Must Need Machine Learning Tools for...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Hi Tavish, Thank you for demonstrating AzureML tool. It is amazing how fast one can build a model using this tool.. It`s quite helpful. Thanks
Hi Tavish, Thanks for this informative article. .As a beginner in machine learning it helped me alot.
Hey Tavish, Thank you for sharing such valuable informations, your posts always brings something new for newbies like me. By the way is there any way to use free trial of Azure without providing payment information?
Oh yes ! You have a trial period of 8 minutes where you can enter as a guest. No credit card details required.