This article was originally published on 5 May, 2016 and updated with the latest tools on May 16, 2018.
Programming is an integral part of data science. Among other things, it is acknowledged that a person who understands programming logic, loops and functions has a higher chance of becoming a successful data scientist. But, what about those folks who never studied programming in their school or college days?
Is there no way for them to become a data scientist then?
With the recent boom in data science, a lot of people are interested in getting into this domain. but don’t have the slightest idea about coding. In fact, I too was a member of your non-programming league until I joined my first job. Therefore, I understand how terrible it feels when something you have never learned haunts you at every step.
The good news is that there is a way for you to become a data scientist, regardless of your programming skills! There are tools that typically obviate the programming aspect and provide user-friendly GUI (Graphical User Interface) so that anyone with minimal knowledge of algorithms can simply use them to build high quality machine learning models.
Many companies (especially startups) have recently launched GUI driven data science tools. I have tried to cover a few important ones in this article and provided videos as well, wherever possible.
Note: All the information provided is gather from open-source information sources. We are just presenting some facts and not opinions. In no manner do we intent to promote/advertise any of the products/services.
RapidMiner (RM) was originally started in 2006 as an open-source stand-alone software named Rapid-I. Over the years, they have given it the name of RapidMiner and also attained ~35Mn USD in funding. The tool is open-source for old version (below v6) but the latest versions come in a 14-day trial period and licensed after that.
RM covers the entire life-cycle of prediction modeling, starting from data preparation to model building and finally validation and deployment. The GUI is based on a block-diagram approach, something very similar to Matlab Simulink. There are predefined blocks which act as plug and play devices. You just have to connect them in the right manner and a large variety of algorithms can be run without a single line of code. On top of this, they allow custom R and Python scripts to be integrated into the system.
There current product offerings include the following:
RM is currently being used in various industries including automotive, banking, insurance, life Sciences, manufacturing, oil and gas, retail, telecommunication and utilities.
DataRobot (DR) is a highly automated machine learning platform built by all time best Kagglers including Jeremy Achin, Thoman DeGodoy and Owen Zhang. Their platform claims to have obviated the need for data scientists. This is evident from a phrase from their website – “Data science requires math and stats aptitude, programming skills, and business knowledge. With DataRobot, you bring the business knowledge and data, and our cutting-edge automation takes care of the rest.”
DR proclaims to have the following benefits:
BigML provides a good GUI which takes the user through 6 steps as following:
These processes will obviously iterate in different orders. The BigML platform provides nice visualizations of results and has algorithms for solving classification, regression, clustering, anomaly detection and association discovery problems. They offer several packages bundled together in monthly, quarterly and yearly subscriptions. They even offer a free package but the size of the dataset you can upload is limited to 16MB.
You can get a feel of how their interface works using their YouTube channel.
Cloud AutoML is part of Google’s Machine Learning suite offerings that enables people with limited ML expertise to build high quality models. The first product, as part of the Cloud AutoML portfolio, is Cloud AutoML Vision. This service makes it simpler to train image recognition models. It has a drag-and-drop interface that let’s the user upload images, train the model, and then deploy those models directly on Google Cloud.
Cloud AutoML Vision is built on Google’s transfer learning and neural architecture search technologies (among others). This tool is already being used by a lot of organizations. Check out this article to see two amazing real-life examples of AutoML in action, and how it’s producing better results than any other tool.
https://www.youtube.com/watch?v=bxxsCLmXmms
Paxata is one of the few organizations which focus on data cleaning and preparation, and not the machine learning or statistical modeling part. It is an MS Excel-like application that is easy to use. It also provides visual guidance making it easy to bring together data, find and fix dirty or missing data, and share and re-use data projects across teams. Like the other tools mentioned in this article, Paxata eliminates coding or scripting, hence overcoming technical barriers involved in handling data.
Paxata platform follows the following process:
Praxata has set its foot in financial services, consumer goods and networking domains. It might be a good tool to use if your work requires extensive data cleaning.
Trifacta is another startup with a heavy focus on data preparation. It has 3 product offerings:
Trifacta offers a very intuitive GUI for performing data cleaning. It takes data as input and provides a summary with various statistics by column. Also, for each column it automatically recommends some transformations which can be selected using a single click. Various transformations can be performed on the data using some pre-defined functions which can be called easily in the interface.
Trifacta platform uses the following steps of data preparation:
Trifacta is primarily used in the financial, life sciences and telecommunication industries.
MLBase is an open-source project developed by AMP (Algorithms Machines People) Lab at the University of California, Berkeley. The core idea behind this is to provide an easy solution for applying machine learning to large scale problems.
It has 3 offerings:
Auto-WEKA is a data mining software written in Java, developed by the Machine Learning Group at the University of Waikato, New Zealand. It is a GUI based tool which is very good for beginners in data science. The best part about it is that it is open-source and the developers have provided tutorials and papers to help you get started. You can learn more about it in AV’s article.
It is primarily used for educational and academic purposes for now.
Driverless AI is a magical platform for enterprises from h2o.ai that supports automatic machine learning. A 1 month trial version is available as a docker image at this link. All you have to do is using simple dropdowns select the files for train, test and mention the metric using which you want to track model performance. Sit back and watch as the platform with an intuitive interface trains on your dataset to give excellent results at par with a good solution an experienced data scientist can come up with.
These are some mindblowing features of Driverless AI
When there are so many big name players in this field, how could Microsoft lag behind? The Azure ML Studio is a simple yet powerful browser based ML platform. It has a visual drag-and-drop environment where there is no requirement of coding. They have published comprehensive tutorials and sample experiments for newcomers to get the hang of the tool quickly. It employs a simple five step process:
MLJar is a browser based platform for quickly building and deploying machine learning models. It has an intuitive interface and allows you to train models in parallel. It comes with built-in hyper-parameters search and makes deploying your model easier. MLJar offers integration with NVIDIA’s CUDA, python, TensorFlow, among others.
You only need to perform three steps to build a decent model:
Currently the tool works on a subscription plan. It has a free plan as well with a 0.25GB dataset limit. It’s definitely worth checking out.
Amazon Lex provides an easy-to-use console for building your own chatbot in a matter of minutes. You can build conversational interfaces in your applications or website using Lex. All you need to do is supply a few phrases and Amazon Lex does the rest! It builds a complete Natural Language model using which a customer can interact with your app, using both voice and text.
It also comes with built-in integration with the Amazon Web Services (AWS) platform. Amazon Lex is a fully managed service so as your user engagement increases, you don’t need to worry about provisioning hardware and managing infrastructure to improve your bot experience.
https://www.youtube.com/watch?v=1_W6Y3c2Aeg
How could we leave out IBM Watson from this list? It is one of the most recognizable brands in the world. IBM Watson Studio provides a beautiful platform for building and deploying your machine learning and deep learning models. You can interactively discover, clean and transform your data, use familiar open source tools with Jupyter notebooks and RStudio, access the most popular libraries, train deep neural networks, among a a vast array of other things.
For people just starting out in this field, they have provided a bunch of videos to ease the introductory phase. You can choose to take a free trial and check out this awesome tool by yourself. The above video guides you through how to create a project in Watson Studio.
Automatic Statistician is not a product per se but a research organization which is creating a data exploration and analysis tool. It can take in various kinds of data and uses natural language processing at it’s core to generate a detailed report. It is being developed by researchers who have worked in Cambridge and MIT and also won Google’s Focussed Research Award with a price of $750,000.
It is still under active development but it’s one to keep an eye on in the near future. You can check out a few examples of how the final reports pan out here.
If you’re hearing a lot of these names for the first time, you’ won’t be the only one! The market for automated machine learning is expanding as more and more data is collected. Will they flood the market in the next few years? Time will tell. But these are excellent tools to assist organizations that are looking to start out with machine learning or are looking for alternate options to add to their existing catalogue.
In this article, we have discussed various initiatives working towards automating various aspects of solving a data science problem. Some of them are in a nascent research stage, some are open-source and others are already being used in the industry with millions in funding. All of these pose a potential threat to the job of a data scientist, which is expected to grow in the near future. These tools are best suited for people who are not familiar with programming & coding.
Do you know any other startups or initiatives working in this domain? Please feel free to drop a comment below and enlighten us!
Hi...How about Tibco Spotfire ? is it good to learn & follow ?
Hi.. I'm not sure about Tibco Spotfire. Just had a quick look. First look is good. I recommend searching for people on LinkedIn or quora who are using the tool and get feedback from them.
Why not Azure ML? that doesn't required lot of coding effort, it is a cloud based machine learning platform. Drag & Drop to create the analytics/Machine learning model. we can create a workspace in Azure machine learning studio, its is free for exploration. Just a live/Hotmail/outlook account is required.
Thanks for pointing. Yes AzureML is another one. As mentioned in the article, its not an exhaustive list.
So the question to be asked here is that why are companies still asking for only R & SAS or Python skills. Why are they not using the GUI tools?
I agree the penetration is less. I don't think these tools are meant for the IT industry. These will infiltrate into domains like heathcare, finance which are still dominated by domain experts. Another thing is although the tools are there, but they have not reached their ultimate potential. I have downloaded the free versions wherever possible and found that this is lot of scope for improvement. But the thing is some of these are backed by big funding and they can grow over time and enhance their scope.
Comments are Closed