IBM’s Machine Learning Library is 46 Times Faster than TensorFlow!

Pranav Dar Last Updated : 25 Mar, 2018
2 min read

Overview

  • IBM’s new Machine Learning library ran a logistic regression model 46 times faster than TensorFlow
  • The model was trained on 4.2 billion examples and 1 million variables
  • Google’s TensorFlow took 70 minutes, IBM’s library took 91.5 seconds

 

Introduction

The race to become the quickest and most efficient library is now in full flight. IBM claims that performing machine learning tasks on it’s POWER servers is an incredible 46 times quicker than on TensorFlow used in Google Cloud.

Earlier this year, a Google software engineer wrote a blog post on how they used Google Cloud Machine Learning and TensorFlow for solving click prediction problems. They trained their deep neural network model “to predict display ad clicks on Criteo Labs clicks logs. These logs are over 1TB in size and include feature values and click feedback from millions of display ads”.

For them, data preprocessing took about an hour, followed by training the model for 70 minutes. The evaluation loss was reported to be 0.13. They did manage to reduce this evaluation loss and get more accurate results but that was achieved at the cost of increasing training time.

But IBM blew those results out of the water. Their training algorithm, running on POWER9 servers and GPUs, outperformed Google Cloud Platform’s in the initial training phase.

The IBM researchers trained their model on the Criteo Labs click logs, the same data source used by Google earlier. It contains 4.2 billion training examples and 1 million variables. They trained it using logistic regression (again, the same technique used by Google). However, IBM used a different ML library – Snap Machine Learning.

IBM’s model completed the same logistic regression in 91.5 seconds! That’s a remarkable 46 times faster than Google’s previous attempt.

IBM posted the below comparisons between their Snap ML library and the other competitors:

You can read more about the Snap Machine Learning library in IBM’s research paper here.

 

Our take on this

A 46 times improvement over TensorFlow is truly impressive. Of course a point to be noted here is that these 2 models were not run on similar hardware configurations so we can’t validate IBM’s results until they publicly release more information.

Having said that, IBM has definitely caught the machine learning world’s attention and has given them an opportunity to introduce their POWER9 servers and the Snap ML library to the general public.

 

Subscribe to AVBytes here to get regular data science, machine learning and AI updates in your inbox!

 

Also, go ahead and participate in our Hackathons, including the DataHack Premier League and Lord of the Machines!

 

Senior Editor at Analytics Vidhya.Data visualization practitioner who loves reading and delving deeper into the data science and machine learning arts. Always looking for new ways to improve processes using ML and AI.

Responses From Readers

Clear

Bhasha
Bhasha

What's the name of the IBM Machine Learning Library?

Hrishi
Hrishi

If even a linear classifier with logistic loss worked for this problem comparing with Tensorflow is not fair since a neural network is clearly not needed and then Tensrflow is not the right tool. Benchmarking with Vowpal Wabbit or Bid Mach would've been more appropriate. You should have brought this point out to help your readers see the results in the right context instead of repeating what IBM say in their paper.

Yk
Yk

These r not comparable. Why comparing ml library to deep learning library - assuming most Commonly used for purposes. So you have more data on ? Solver hyper parameter Tpa-scd Inter socket cocoa - very odd way of solving that specific problem Please read 4.1 specifically meta+rdd and persistent memory and see if you can suppress a smile.

Congratulations, You Did It!
Well Done on Completing Your Learning Journey. Stay curious and keep exploring!

We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.

Show details