Continuing our theme of collecting and sharing the top machine learning GitHub repositories every month, the February edition is fresh off the shelves ready for you!
GitHub repositories are one of the easiest and best things for all the people working in data science to keep ourselves updated with the latest developments and projects. It’s also an awesome collaboration tool where we can connect with other like minded data scientists on various projects.
Without any further ado, let’s dive into this month’s list.
This is part of a series from Analytics Vidhya that will run every month. You can check out the top 5 repositories that we picked out in January here.
FastPhotoStyle is a python library developed by NVIDIA. The model takes a content photo and a style photo as inputs. It then transfers the style of the style photo to the content photo.
The developers have cited two examples to show how the algorithm works. The first is a very simple iteration – you download a content and a style image, re-size them, and then simply run the photorealistic image stylization code. In the second example, semantic label maps are used to create the stylized image.
You can read more about this library on Analytics Vidhya’s blog here.
If you’ve ever scraped tweets from Twitter, you have experience working with it’s API. It has it’s limitations and is not easy to work with. This python library was created with that in mind – it has no API rate limits (does not require authentication), no limitations, and is ultra quick. You can use this library to scrape the tweets of any user trivially
The developer has mentioned that it can be used for making Markov Chains. Do note that it works only with python version 3.6+.
This is an implementation of the handwriting synthesis experiments presented in the ‘Generating Sequences with Recurrent Neural Networks’ paper by Alex Graves. As the name of the repository suggests, you can generate different styles of handwriting. The model is based on priming and biasing. Priming controls the style of the samples and biasing controls the neatness of the samples.
The samples presented by the author on the GitHub page are truly fascinating in their diversity. He is looking for contributors to enhance the repository so if you’re interested, get in touch with him!
This is a PyTorch implementation of “Efficient Neural Architecture Search (ENAS) via Parameters Sharing”. What do ENAS do? They reduce the computational requirement, that is, the GPU Hours of the Neural Architecture Search by an incredible 1000 times. They do this via parameter sharing between models that are subgraphs within a large computational graph.
The process of how to use it have been neatly explained on the GitHub page. The prerequisites for implementing this library are:
This is a relatively straightforward, yet utterly fascinating, use of machine learning. Using a convolutional neural network in python, the developer has built a model that can recognize the hand gestures and convert it into text on the machine.
The author of this repository built the CNN model using both TensorFlow and Keras. He has specified, in detail, how he went about creating this project and each step he followed. It’s definitely worth checking out and trying once on your own machine.
Did you find these helpful? Or are you aware of any other GitHub repositories the AV community should know about? Let us know in the comments section below!
Senior Editor at Analytics Vidhya.Data visualization practitioner who loves reading and delving deeper into the data science and machine learning arts. Always looking for new ways to improve processes using ML and AI.
15+ Github Machine Learning Repositories for Da...
Face Recognition Attendance System Using Python...
7 Innovative Machine Learning GitHub Projects y...
5 Open Source Machine Learning Projects to Chal...
6 Powerful Open Source Machine Learning GitHub ...
Add Shine to your Data Science Resume with thes...
6 Exciting Open Source Data Science Projects yo...
Top 5 Data Science & Machine Learning Repo...
30 Challenging Open Source Data Science Project...
15 Trending Data Science GitHub Repositories yo...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Hi, I need a simple prediction tool using CNN /Tensorflow+Back propagation which will allow me to train data . My data at present is Sindhi written in Arabic script and mapped to Devanagari script. A small sample شرِڙاٽُ=शरिड़ाटु شرڌانجليِ=श्रद्धांजली شرڙاٽُ=शरड़ाटु شرڻارٿيِ=शरणार्थी شسترشالا=शस्त्रशाला شسترهيڻُ=शस्त्रहीणु شسترُ=शस्त्रु ششماهيِ=शशमाही ششُ=शिषु I have around 300,000 samples At present I am writing rules to handle this, but am sure that a tool in Python can solve this. Any pointers to such a tool will be most welcome. Thanks in advance.
Hi Raymond, You would have to build a machine translation model from scratch for this data, as I don't think you would find pretrained models for a similar problem. You can refer this article for pointers
I came across a white paper once which have been implemented on arabic text recognition. You have to google that and I think it claims to be powerful. If you are lucky, you might find github repo for that implementation.