So a team of researchers from IBM decided to explore this part of human nature and attempted to integrate that into the world of machine learning. They have used this idea to justify how a machine learning model performs the task of classification. The objective of their study was to use “the missing results” and explain the inner working of machine learning models, and to strip away the black box reputation surrounding them.
Taking another example, if a model was trained to identify a car, the model might use information such as – does it have wheels? How about headlights? The object does not have legs. The researchers claim that the features that are missing also play an important part in perceiving how a model performs and arrives at it’s final conclusion.
Based on this idea, the team performed their experiments on three different datasets, namely:
The team has also presented a paper (link below), where they have explained deep neural network classification based on the characteristics present (wheel, headlights) and absent (hands). They have created a system for “contrastive explanations” that specifically looks for missing information in the data. The contrastive explanation method has two parts:
Each experiment was evaluated with the help of domain experts and performed fairly well. You can read the research paper in full here to deep dive into the various experiments they conduced and how they arrived at their final conclusion.
This is a pretty fascinating approach to understanding models. Once of the most common issues with models today is how complex they can become (especially deep neural networks). Explaining them to the client or end user is a mammoth task and often ends in failure. This approach, while certainly nascent right now, should help strip away some of the misunderstandings around machine learning.
If you knew why you are being recommended something, there is a higher chance that you might buy it (as opposed to something that you perceived as a random recommendation). This approach is ideal for those studies where you need to make a binary classification – like a rejected loan. Not only will this approach explain what was there in the application (like a previous default), but also what wasn’t there (lack of a college degree).
As a data scientist, does this approach appeal to you? Do you see any upside in this? Let us know in the comments below!