The applications of computer vision continue to amaze. From detecting objects in a video, to counting the number of people in a crowd, there is no challenge that computer vision seemingly cannot overcome.
One of the more intriguing applications of computer vision is identifying pixels in a scene and using them for diverse and remarkably useful purposes. We will be taking up one such application in this article, and trying to understand how it works using Python!
The aim of this post is to build a custom Mask R-CNN model that can detect the area of damage on a car (see the image example above). The rationale for such a model is that it can be used by insurance companies for faster processing of claims if users can upload pics and they can assess damage from them. This model can also be used by lenders if they are underwriting a car loan especially for a used car.
You can read an in-depth explanation of Mask R-CNN and how it works in more detail here.
How to build a Mask R-CNN for Car Damage Detection
Collecting Data
Annotating the Data
Training a Model
Validating the Model
Run the Model of Images and Make Predictions
What is Mask R-CNN?
Mask R-CNN is an instance segmentation model that allows us to identify pixel wise location for our class. “Instance segmentation” means segmenting individual objects within a scene, regardless of whether they are of the same type — i.e, identifying individual cars, persons, etc. Check out the below GIF of a Mask-RCNN model trained on the COCO dataset. As you can see, we can identify pixel locations for cars, persons, fruits, etc.
Mask R-CNN is different from classical object detection models like Faster R-CNN where, in addition to identifying the class and its bounding box location, it can also color pixels in the bounding box that correspond to that class. When do you think we would be need this additional detail? Some examples I can think of are:
Self-Driving Cars need to know the exact pixel location of the road; potentially of other cars as well to avoid collisions
Robots may need pixel location of objects that they want to pick up (Amazon’s drones comes to mind here)
The easiest way to try a Mask R-CNN model built on COCO classes is to use the Tensorflow Object Detection API. You can refer to this article (written by me) that has information on how to use the API and run the model on YouTube videos.
How Mask R-CNN works
Before we build a Mask R-CNN model, let’s first understand how it actually works.
A good way to think about Mask R-CNN is that it is a combination of a Faster R-CNN that does object detection (class + bounding box) and FCN (Fully Convolutional Network) that does pixel wise boundary. See figure below:
Mask R-CNN is conceptually simple: Faster R-CNN has two outputs for each candidate object, a class label and a bounding-box offset; to this we add a third branch that outputs the object mask — which is a binary mask that indicates the pixels where the object is in the bounding box. But the additional mask output is distinct from the class and box outputs, requiring extraction of much finer spatial layout of an object. To do this Mask R-CNN uses the Fully Convolution Network (FCN) described below.
FCN is a popular algorithm for doing semantic segmentation. This model uses various blocks of convolution and max pool layers to first decompress an image to 1/32th of its original size. It then makes a class prediction at this level of granularity. Finally it uses up sampling and deconvolution layers to resize the image to its original dimensions.
So, in short, we can say that Mask R-CNN combines the two networks — Faster R-CNN and FCN in one mega architecture. The loss function for the model is the total loss in doing classification, generating bounding box and generating the mask.
Mask RCNN has a couple of additional improvements that make it much more accurate than FCN. You can read more about them in their paper.
How to build a Mask R-CNN Model for Car Damage Detection
For building a custom Mask R-CNN, we will leverage the Matterport Github repository. The latest TensorFlow Object Detection repository also provides the option to build Mask R-CNN. However I would only recommend this for the strong-hearted! The versions of TensorFlow, object detection, format for mask, etc. can demand debugging of errors. I was able to successfully train a Mask R-CNN using it.
But I have seen many people struggle with all kinds of errors. So I now highly recommend the Matterport Mask R-CNN repository to anyone venturing into this domain.
Collecting Data
For this exercise, I collected 66 images (50 train and 16 validation) of damaged cars from Google. Check out some examples below.
Annotating the Data
A Mask R-CNN model requires the user to annotate the images and identify the region of damage. The annotation tool I used is the VGG Image Annotator — v 1.0.6. You can use the html version available at this link. Using this tool you can create a polygon mask as shown below:
Once you have created all the annotations, you can download the annotation and save it in a json format. You can look at my images and annotations on my repository here.
Training a model
Now we start the interesting work of actually training the model! Start by cloning the ‘Matterport Mask R-CNN’ repository— https://github.com/matterport/Mask_RCNN.
Next we will load our images and annotations.
class CustomDataset(utils.Dataset):
def load_custom(self, dataset_dir, subset):
"""Load a subset of the Balloon dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes. We have only one class to add.
self.add_class("damage", 1, "damage")
# Train or validation dataset?
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
# We mostly care about the x and y coordinates of each region
annotations1 = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
annotations = list(annotations1.values()) # don't need the dict keys
# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.
annotations = [a for a in annotations if a['regions']]
# Add images
for a in annotations:
# Get the x, y coordinaets of points of the polygons that make up
# the outline of each object instance. There are stores in the
# shape_attributes (see json format above)
polygons = [r['shape_attributes'] for r in a['regions'].values()]
# load_mask() needs the image size to convert polygons to masks.
image_path = os.path.join(dataset_dir, a['filename'])
image = skimage.io.imread(image_path)
height, width = image.shape[:2]
self.add_image(
"damage", ## for a single class just add the name here
image_id=a['filename'], # use file name as a unique image id
path=image_path,
width=width, height=height,
polygons=polygons)
I have used the balloon.py file shared by Matterport and modified it to create a custom code that loads images and annotations and adds them to a CustomDataset class. Check out the entire code here. Follow the same code block and update it for any specifics for your class. Please note that this code only works for one class.
Further, you can use this notebook to visualize the mask on the given images. See an example of this below:
To train the model, we use the COCO trained model as the checkpoint to perform transfer learning. You can download this model from the Matterport repository as well.
To train the model, run the below code block:
## Train a new model starting from pre-trained COCO weights
python3 custom.py train --dataset=/path/to/datasetfolder --weights=coco
## Resume training a model that you had trained earlier
python3 custom.py train --dataset=/path/to/datasetfolder --weights=last
I am using a GPU and trained the model for 10 epochs in 20–30 minutes.
Validate your model
You can inspect the model weights using the notebook — Inspect Custom Weights. Please link your last checkpoint in this notebook. This notebook can help you perform a sanity check if your weights and biases are properly distributed. See a sample output below:
Run model on images and make predictions
Use the notebook inspect_custom_model to run model on images from test/val set and see model predictions. See a sample result below:
And there you have it! You just built a Mask R-CNN model to detect damage on a car. What an awesome way to learn deep learning.
End Notes
Mask-RCNN is the next evolution of object detection models which allow detection with better precision. A big thanks to Matterport for making their repository public and allowing us to leverage it to build custom models. This is just a small example of what we can accomplish with this wonderful model.
If you have any questions, or feedback for me on this article, please share it using the comments section below.
Priya Dwivedi – President, Deep Learning Analytical Solutions
Priya Dwivedi is a graduate of IIT Delhi. She has 10+ years experience working as a data scientist. She currently runs her own deep learning analytics consultancy (http://www.deeplearninganalytics.org/) that works with businesses to build and implement deep learning models for them. Please reach out to her at [email protected] if you would like to collaborate with her on a project.
that's a cool application Priya.
Thanks for sharing that, I'll need some time to digest all of that.
Srikanth
Helllo Priya,
The post is really cool. I am trying to just draw a bounding box over the damaged area and possibly try to crop it out from the image and also name the part of the car it is. Is this possible ? I am actually trying to build a system that can quantitatively tell out how much a car is damaged from the provided image and also the parts that are damaged. Please do suggest me a good way to do it. Possibly any reference links available too.
Thank you
Karan Purohit
Thanks for the nice blog!
I ran your model. so after training when I run inspect_custom_model notebook it gives error:
OSError: Unable to open file (unable to open file: name = 'mask_rcnn_damage_0010.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
I cant find saved weights file.
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
that's a cool application Priya. Thanks for sharing that, I'll need some time to digest all of that.
Helllo Priya, The post is really cool. I am trying to just draw a bounding box over the damaged area and possibly try to crop it out from the image and also name the part of the car it is. Is this possible ? I am actually trying to build a system that can quantitatively tell out how much a car is damaged from the provided image and also the parts that are damaged. Please do suggest me a good way to do it. Possibly any reference links available too. Thank you
Thanks for the nice blog! I ran your model. so after training when I run inspect_custom_model notebook it gives error: OSError: Unable to open file (unable to open file: name = 'mask_rcnn_damage_0010.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0) I cant find saved weights file.