Have you noticed that the recent surge of data scientists have a background in computer science? It’s not a coincidence. These two domains are important in their own right but when merged together, they produce powerful results.
We are thrilled to announce the release of episode 10 of our DataHack Radio podcast with none other than Professor Jeannette M. Wing! She has over 4 decades of experience in academia and the industry, and there is no one better to give a perspective on how computer science has evolved, and how it meshes with the data science world.
I have briefly summarized the key takeaways from this episode below. I recommend listening to the podcast to truly get a feel for how computer science and data science are a powerful combination when used together. Enjoy this episode!
Subscribe to DataHack Radio NOW and listen to this, as well as all previous episodes, on any of the below platforms:
Professor Wing has always been fascinated by mathematics and engineering since her childhood. She went to graduation school at MIT and started majoring in electrical engineering there. During her initial days at the university, she was introduced to the world of computer science and that prompted her to change majors. And there was no looking back from that point on.
Post her days at MIT (where she also successfully completed her Ph.D in computer science), she worked at the University of Southern California for a couple of years before joining Carnegie Mellon University. She was the computer science department head twice at Carnegie Mellon. In between those two stints, she worked at the National Science Foundation (NSF).
During her second time as the department head at Carnegie Mellon, Microsoft approached her and she took up a role there in 2013. Within a year of joining, she was put in charge of all the basic research labs, including in Silicon Valley, New York, Bangalore, and Beijing, among others.
And then last year came Columbia University and a chance to work in academia again. At Columbia, she is the Avanessians Director of the Data Science Institute and Professor of Computer Science. She reports directly to the President of the University.
Although there has been decades of research done in computer science to formally show how one can prove how a program is correct, this is all with respect to mathematical logic. What data science is now bringing is the complexity for proving how a property is correct with respect to inherently probabilistic and statistical methods.
Professor Wing firmly believes that a lot of the new data science methods should be revisited by the formal methods techniques. Its a challenge for the formal methods community to help data science grow using these concepts, something which hasn’t yet happened.
In case you are not aware, formal methods are mathematics based techniques especially used in computer science. You can read more about them here.
Professor Wing, in her current role at Columbia University, is working with the AI community to understand what methods and logic are required to specify the relevant properties that these machine learned models should have. She feels this will help build safe and trustworthy AI systems for the future, a topic Professor Wing is a strong advocate of.
At Microsoft, she was overlooking several research projects in multiple locations as I mentioned above. The Bangalore lab, in particular, had a couple of big strengths:
“I’m really just an academic at heart.” – Professor Wing
A very common question from folks new to data science is – “what’s the difference between working in academia versus getting industry experience”? And Professor Wing was kind enough to cover this topic.
She echoes the wide-held belief that being a scholar has it’s own distinct advantages. You have more freedom to explore questions like why something works, rather than just focusing on how it works (which is what happens in most industry roles). The science part of both computer and data science comes from research and academia far more than the industry.
It was a privilege hosting Professor Wing on our podcast. Her explanation of formal methods and the important part they are playing in the software industry was a true delight to listen to. Fans of mathematics will surely love this episode.
Happy listening!
Senior Editor at Analytics Vidhya.Data visualization practitioner who loves reading and delving deeper into the data science and machine learning arts. Always looking for new ways to improve processes using ML and AI.
Nikhil Mishra’s Journey to Becoming a Kag...
DataHack Radio #22: Exploring Computer Vision a...
DataHack Radio Episode #6: Exploring Techniques...
DataHack Radio #4 – Data Privacy, Women i...
DataHack Radio #11: Decision Intelligence with ...
Exploring Uses AI for Science with Anima Anandk...
DataHack Radio Episode #5: Building High Perfor...
29 Inspiring Women Blazing a Trail in the Data ...
Women Leaders in Data Science: Top Influentials...
Financial Crime, Content Creation, and AI Trend...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s