Andrew Ng is the most recognizable personality of the modern deep learning world. His machine learning course is cited as the starting point for anyone looking to understand the math behind algorithms. But even the great Andrew Ng looks up to and takes inspiration from other experts.
In this amazing and in-depth video series, he has interviewed some of the most eminent personalities in the world of deep learning (eight heroes, to be precise). The interviews span the length and breadth of deep learning, including topics like backpropogation, GANs, transfer learning, etc. Even artificial intelligence crops up in between conversations. But don’t worry if these terms sound overwhelming, we have listed down the key takeaways from each interview just for you.
Source: Forbes
The “heroes” Andrew Ng has interviewed are:
Geoffrey Hinton
Ian Goodfellow
Yoshua Bengio
Pieter Abbeel
Yuanqing Lin
Andrej Karpathy
Ruslan Salakhutdinov
Yann LeCun
What a stellar cast of experts! Now it’s time to dive in and look at the top takeaways from each video.
Geoffrey Hinton
Geoffrey Hinton is best known for his work on artificial neural networks (ANNs). His contributions in the field of deep learning are the main reason behind the success of the field and he is often called the “Godfather of Deep Learning” (with good reason). His research on the backpropagation algorithm brought about a drastic change in the performance of deep learning models.
Key takeaways from the video
Read the literature behind deep learning algorithms but don’t get lost in them. Focusing on understanding and implementing things instead of dedicating most of the time to theory will help you grasp concepts more clearly
Keep practicing programming which will help you reach solutions at a far more quicker pace
Mr. Hinton also mentioned some of the key topics which any deep learning enthusiast should work on:
Ian Goodfellow is a rockstar in the deep learning space and is currently working as a research scientist at Google Brain. He is best known for his invention of generative adversarial networks (GANs). His book on “Deep Learning” covers a broad range of topics like mathematical and conceptual backgrounds and deep learning techniques used in the industry, which can be a good starting point for any deep learning enthusiast. We strongly recommend reading that book, it’s free!
Key takeaways from the video
Linear algebra and probability are critical subjects for a data scientist to master if he/she wants to become an expert in this field
Work on projects that you find interesting, and always open source your code on GitHub
Write blogs/papers about what you are learning in this field. This will help in solidifying your understanding and might even help other people out
Read books and implement your interpretations on some projects at the same time
Yoshua Bengio is a computer scientist, well known for his work on ANN and deep learning. He is the co-founder of Element AI, a Montreal-based business incubator that seeks to transform AI research into real-world business applications.
Key takeaways from the video
The idea of drawing connections between human intelligence and computers has always fascinated Yoshua Bengio. As a result he engrossed himself into books and research papers, and that has helped build his extremely strong base in this field
Back in 1985 when Mr. Bengio was still nascent to deep learning, the focus was more on performing experiments and building intuitions while theories came later (what we call applied learning these days)
His advice – read a lot and practice as often as possible. Those two things are key to mastering a subject like Deep Learning. Simply using a software and not understanding how it works is not really. The trick is to mix programming with mathematical concepts
Pieter Abbeel is the Director of the UC Berkeley Robot Learning Lab. His work in reinforcement learning is often cited by scholars as the best in the modern era. He has previously worked in a senior role at OpenAI.
Key takeaways from the video
Professor Abbeel has always been interested in understanding how things work and in trying to build new things. It was only later in his career when he developed a keen interest in understanding how a machine can think.
This is as good a time as any for people to get into AI. According to Mr. Abbeel, getting a start in the field is not difficult as there are a number or resources available out there, most of them free of cost
Doing self study and taking online courses is a decent way to get started. Along with that, try and implement your learning because only reading articles and watching videos will only take you so far
Yuanquing Lin is the Director at the Institute of Deep Learning at Baidu. He has a background in mathematics and physics, and holds a Ph.D in machine learning. A word of caution – the English might be a little hard to understand in the video as it’s not Mr. Yuanquing’s first language.
Key takeaways from the video
Building algorithms from scratch and learning new things every day is something every data scientist should aspire to
At present, there is a really good community of researchers, a number of open source frameworks, and publicly available benchmarks out there. For the newbies, he suggests learning from open-source deep learning frameworks and resources
Andrej Karpathy is the director of artificial intelligence and Autopilot Vision at Tesla. Like Pieter Abbeel, Andrej previously worked at OpenAI, but as a research scientist. He is a widely considered and cited as a leading expert in the field of computer vision, especially image recognition (though of course he’s an expert in quite a lot of deep learning areas).
This is one the most intriguing videos in the series!
Key takeaways from the video
Andrej discusses why he established a human benchmark, or baseline, for the ImageNet computer vision challenge. He felt the need to see how machine learning algorithms would fare against humans in such computer vision tasks. Here, the key takeaway is there should always be a human benchmark for any task we are trying to solve using machine learning or deep learning
He is particularly proud of his course, CS231n (this course is a deep dive into details of the deep learning architectures), through which he aims to share his knowledge of deep learning (computer vision in particular), with emerging and aspiring data scientists
The emergence of pretrained networks and their applications across a variety of domains is something that Andrej is excited about
He believes that the field of AI will eventually split into two categories— Applied AI and Artificial General Intelligence (AGI)
Ruslan Salakhutdinov is the director of AI Research at Apple and is known as the developer of Bayesian Program Learning. His areas of specialization are many, but are listed as probabilistic graphical models, large-scale optimization, and of course, deep learning. Here’s a fun fact – his doctoral adviser? None other than Geoffrey Hinton!
Key takeaways from the interview
Boltzmann machines and Deep Boltzmann machines carry a lot of untapped potential. Additionally, we haven’t really figured out how to make Unsupervised, Generative Unsupervised and Semi-Supervised modeling work properly
Do not to be afraid to try new things in the field of deep learning
One should code each concept from scratch to truly understand and learn it
He also tackles the subject of PhD vs joining a company. He is slightly more in favor of PhD, or research in academia, as it gives more freedom to work on a variety of problems (something which the industry tends to throttle)
Yann LeCun is the founding father of convolutional nets. He is currently the Chief AI Scientist and VP at Facebook. He is a professor, researcher, and R&D manager with academic and industry experience in AI, machine learning, deep learning, computer vision, intelligent data analysis, data mining, data compression, digital library systems, and robotics. And that’s just scraping the surface of what this expert is capable of.
Key takeaways from the video
The scenario of working with neural networks has completely changed since the 1980s. The resources that were not present then are in abundance nowadays
He also touches upon the interesting topic of corporate research. More freedom should be given to the researchers working in the corporate sector, and that all data science/deep learning practitioners should take time to do research, and give back to the community
Given the easy availability of open-source tools like Tensorflow, Pytorch, and Keras, people should start working and experimenting with deep learning, rather than getting mired in theoretical concepts
End Notes
This is easily the most fascinating interview series on YouTube concerning deep learning. There is SO MUCH to learn from each of these seven heroes. If you haven’t seen these videos before, we’re glad you stopped by because this will feel like hitting the jackpot.
Andrew Ng is a wonderful interviewer and him conversing with other experts feels like a dream. Grab your pen and notebook because there’s a whole host of things for you to learn.
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Right! this list of Deep Learning heroes is really exhaustive.
Thanks a lot for the post. This helps in getting a perspective and direction.