This article was published as a part of the Data Science Blogathon.
In this article, we will see what actually gradient Descent is and why it became popular and why most of the algorithms in AI and ML follow this technique.
Before Starting this, what actually Gradient Descent means? , Sounds Odd Right!
Cauchy is the first person who proposed this idea of Gradient Descent in 1847
Well, the word gradient means an increase and decrease in a property or something! whereas Descent means the act of moving downwards. So, in total, the observation done while coming down and reaching to someplace and again moving up is termed as gradient Descent
So, in normal terms as of in the picture, the sloppiness of the hill is high at the top, one single slip, and you are done! The sloppiness when you reach the bottom of the hill is minimal or close to or equal to zero, the same scenario works in Mathematics as well.
Let us find out how?
So, if you see here this is the same shape as the hill here. Let us assume that this is a curve that is of the form y=f(x). Here we know the slope at any point is the derivative of y with respect to x at that particular position, if you check this using any curve you will find out that slope while coming downwards decreases and equal to zero at the tip or at the minimal position and increases as we move up again
Keeping this in mind we will look at what happens to the x and y values at the minimal point,
If we observe carefully in the figure below, we have five points here at different positions!
As we move downwards we are finding that our y value decreases w.r.t x value so out of all the points here we get comparatively minimal values at the bottom of the graph. So, our conclusion here is we always find the minimal (x,y) at the bottom of the graph. Now let us see how we can impart this in ML and DL and how to reach that minimal point without travelling the entire graph?
In any Algorithm, our main Motive is to minimize our loss that indicates that our model has performed well. For analyzing this we will use linear regression
Since linear regression uses a line to predict the continuous output-
Here we need to find the w and c such that we get the best fit line that minimizes the error. So our aim is to find the optimal w and c values
We start w and c with some random values and we start updating these values w.r.t to the loss i.e we update these weights till our slope is equal to or close to zero.
We will take the loss function on the y-axis and w and c on the x-axis. Check the figure below-
For reaching the minimal w value in the first graph follow these steps-
1. Start calculating the loss for the given set of x _values with the w and c.
2. Plot the point and now update the weight as-
w_new =w_old – learning_rate * slope at (w_old,loss)
Repeat these steps until you reach the minimal values!
* we are subtracting slope here because we want to move to the bottom of the hill or in the direction of steepest descent
* as we subtract our parameters gets updated and we will get a slope less than the previous one which is what we want to move to a point where the slope is equal to or close to zero
*we will talk about learning rate later!
The same applies to graph 2 also i.e loss vs c
Now the question is why the learning rate is put in the equation? We cannot travel all the points present in between the starting point and the minimal point-
We need to skip some points-
Here is a sample algorithm of how linear regression works using Gradient Descent. Here we use mean square error as a loss function-
1. initializing model parameters with zeros
m=0 , c=0 |
|
2. initialize learning rate with any value in the range of (0,1) exclusive
lr = 0.01 |
You know the mean square error equation i.e-
Here m in the L.H.S is noting but slope (w). Same with respect to c also-
for i in range(epochs): y_pred = w * x +c D_M = (-2/n) * sum(x * (y_original - y_pred)) D_C = (-2/n) * sum(y_original - y_pred)
* here sum function adds the gradient w.r.t all the points at one go!
Update the parameters for all iterations-
W = W – lr * D_M
C = C – lr * D_C
Gradient Descent is used in Deep Learning in Neural Networks also …
Here we update the weights for each neuron so that we get the best classification with a minimal error we use gradient descent to update all the weights of every layer using backpropagation…
Wi = Wi – learning_rate * derivative (Loss function w.r.t Wi)
Hi Folks, I am Phani Ratan. I have a keen interest in exploring deep learning and computer vision concepts to the core. I believe explaining something to someone will make you 0.01 times better than what you know now. I'm on a mission to make concepts clear and interesting for everyone. support me on this mission by commenting on my posts. Thank you
Gradient Descent Algorithm: How Does it Work in...
Optimizers in Deep Learning: A Detailed Guide
Understanding The What and Why of Gradient Descent
Introduction to Gradient Descent Algorithm (alo...
An Intuitive Way to Understand Gradient Descent...
Understanding Gradient Descent Algorithm
Gradient Descent From Scratch
Complete Guide to Gradient-Based Optimizers in ...
Gradient Descent Algorithm : Understanding the ...
Gradient Descent and its Types
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s