This article was published as a part of the Data Science Blogathon.
If you want to know – How to use MACHINE LEARNING ALGORITHMS for prediction, then –Keep Reading & Keep Learning.
Although there aren’t any industry standards on ascertaining the expense of losing a salaried employee, a few studies, (for instance SHMR) foresee that each time a business replaces a salaried employee, it costs about 5 to 8 months’ compensation all expenses considered. For a supervisor making $50,000 per year, that is $30,000 to $40,000 in enrolling and hiring costs.
Yet, others foresee that the expense is considerably more – than losing a salaried worker can cost as much as 2x their yearly compensation, particularly for a top/middle level manager. Huge costs incorporate the expense of recruiting, onboarding, and long loss of efficiency.
By reading this article, one can understand two different perspectives: –
Individual perspective – How an organization calculates attrition rate using machine learning algorithms, and it can also estimate the chances of there being an opportunity to apply in an organization or not.
Company Perspective: An organization also gets to know if they should start recruiting or not. If an attrition rate is high, then, an organization also gets to know the time for making amendments in the current employee retention policies.
Analyzing the factors and requisites that can influence the IBM employees attrition rate and finally classifying — on an average what percentage of employees position has not been filled yet.
Orange is a visual programming software package used for this domain. It has uses widely ranging from machine learning, data mining, and data analysis, etc. Orange tools (called widgets) are within the realm of simple data visualization & pre-processing empirical evaluation of learning algorithms and predictive modeling. Visual programming is implemented via a combination in which workflows are designed by linking user-designed widgets.
At the same time, proficient users can use Orange as a Python library to manipulate data and alter widget.
An attrition rate is utilized to quantify employees lost over a period who aren’t yet replaced. The rate appears to be a percentage contrasted with the total workforce. HR(s) often use an attrition rate to determine the number of vacant positions.
Firstly, the .CSV File was uploaded (containing IBM employees data), then all the target column(s) were selected, i.e., Attrition & then the RANK widget was chosen from the Data Column, as ranking helps in giving a gist of what is required the most in a data. Then the first 20 Data Heads have been selected according to the different ranks.
Viewing the data according to the RANK and then SELECTING the Data from the FILE.
The Data has been checked using Data Table — to know whether the Data has any missing values or not, according to the Data Table — the Data has no missing values.
It shows that Data has NO MISSING VALUES.
The prediction was made by orange using different models and then evaluated by using Test & Score.
In the previous article, it was mentioned that the RANDOM FOREST was the BEST MODEL. So, this time three different models have been used — RANDOM FOREST, SUPPORT VECTOR MACHINE (SVM) & ARTIFICIAL NEURAL NETWORK (ANN), and then the comparison was made to understand which model will be more efficient and effective for a better prediction.
– Random Forest model was used in the prediction because: –
Random Forest is a tree-based learning algorithm with the power to form accurate decisions as it has many decision trees together. As its name says — it’s a forest of trees. Hence, Random Forest takes more training time than a single decision tree. Each branch and leaf within the decision tree works on the random features to predict the output. Then this algorithm combines all the predictions of individual decision trees to generate the final prediction, and it can also deal with the missing values.
– Support Vector Machine (SVM) model was used in the prediction because: –
SVM has a regularization feature. So, it has good generalization capabilities, which prevent it from over-fitting, and it can also be used to solve both categorical and numerical problems. A small change to the Data does not significantly affect the SVM. So, the SVM model is stable.
– Artificial Neural Network (ANN) model was used in the prediction because: –
ANN is like our brain; millions and billions of cells – called neurons, which processes information in the form of electric signals. Similarly, in ANN, the network structure has an input layer, a hidden layer, and the output layer. It is also called Multi-Layer Perceptron as it has multiple layers. The hidden layer is known as a “distillation layer” that distills some critical patterns from the data/information and passes it onto the next layer. It then makes the network quicker and more productive by distinguishing the data from the data sources, leaving out the excess data.
After Test & Score (it helps analyze and translate qualitative data(characters) into quantitative data(numbers)), Confusion Metrics was used to see all the True Positives, False Negative values, misclassified data & correct data. And lastly, the Distribution visualization was used to understand the data.
The final results were turned out to be different as all the three models have some different values. So, there is a need to take an average of all the results.
An average has taken to know the Attrition rate.
By doing this, it can be said that in ATTRITION, only 7.45% of the population (Total Population is 1236) comes under the YES category, and the rest, i.e., 92.55% of the population, comes under the NO category.
And, it can also be said that Artificial Neural Network (ANN) is a better model than Support Vector Machine (SVM) & Random Forest because it has a higher AUC (Area Under Curve) as:
In this case, it can be seen that — Artificial Neural Network (ANN) is a better model as it has a HIGHER AUC (Area Under Curve).
This is the full MODEL VIEW.
This dataset (.CSV file) is taken from Kaggle.
Top 10 Machine Learning Algorithms You Must Know
Top 100 Data Science Interview Questions & ...
Employee Attrition Analysis using Logistic Regr...
Employee Attrition Prediction – A Compreh...
Bank Customer Churn Prediction Using Machine Le...
Introduction to Random forest – Simplified
Churn Prediction- Commercial use of Data Science
Classification algorithms in Python – Hea...
Bagging- 25 Questions to Test Your Skills on Ra...
Understanding Random Forest Algorithm With Exam...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Very well written, hope to see a lot more articles soon!
Good work done👍 with excellent appropriate content..
Great work!