Quite often, we use data verification and data validation interchangeably when we talk about data quality. However, these two terms are distinct. In this article, we will understand the difference in 4 different context –
Table 1 explains the dictionary meaning of the words verification and validation with a few examples.
To summarize, verification is about truth and accuracy, while validation is about supporting the strength of a point of view or the correctness of a claim. Validation checks the correctness of a methodology while verification checks the accuracy of the results.
Now that we understand the literal meaning of the two words, let’s explore the difference between “data verification” and “data validation”.
Data verification: to make sure that the data is accurate.
Data validation: to make sure that the data is correct.
Let us elaborate with examples in Table 2.
Table 2: “Data verification” and “data validation” examples
From a software development perspective,
As shown in Fig 1, proof of correctness, robustness analysis, unit tests, integration tests, and others are all verification steps where tasks are oriented to verify specifics. The software output is verified against desired output. On the other hand, model inspection, black box testing, usability testing are all validation steps where tasks are oriented to understand if the software meets the requirements and expectations.
Fig 1: Differences between Verification and Validation in software development
The role of data verification in the machine learning pipeline is that of a gatekeeper. It ensures accurate and updated data over time. Data verification is made primarily at the new data acquisition stage i.e. at step 8 of the ML pipeline, as shown in Fig. 2. Examples of this step are to identify duplicate records and perform deduplication, and to clean mismatch in customer information in fields like address or phone number.
On the other hand, data validation (at step 3 of the ML pipeline) ensures that the incremental data from step 8 that is added to the learning data is of good quality and similar (from a statistical properties perspective) to the existing training data. For example, this includes finding data anomalies or detecting differences between existing training data and new data to be added to the training data. Otherwise, any data quality issue/statistical differences in incremental data may be missed and training errors may accumulate over time and deteriorate model accuracy. Thus, data validation detects significant changes (if any) in incremental training data at an early stage that helps with root cause analysis.
1. Aditya Agarwal: Aditya Aggarwal serves as Data Science – Practice Lead at Abzooba Inc. With more than 12+ years of experience in driving business goals through data-driven solutions, Aditya specializes in predictive analytics, machine learning, business intelligence & business strategy across a range of industries. As the Advanced Analytics Practice Lead at Abzooba, Aditya leads a team of 50+ energetic data science professionals at Abzooba that are solving interesting business problems using machine learning, deep learning, Natural Language Processing, and computer vision. He provides thought leadership in AI to clients to translate their business objectives into analytical problems and data-driven solutions. Under his leadership, several organizations have automated routine tasks, reduced operational cost, boosted team productivity, and improved top-line and bottom-line revenues. He has built solutions such as subrogation engine, price recommendation engine, IoT sensor predictive maintenance, and more. Aditya holds a Bachelor of Technology and Minor Degree in Business Management from the Indian Institute of Technology (IIT), Delhi.
2. Dr. Arnab Bose: Dr. Arnab Bose is Chief Scientific Officer at Abzooba, a data analytics company, and an adjunct faculty at the University of Chicago where he teaches Machine Learning and Predictive Analytics, Machine Learning Operations, Time Series Analysis, and Forecasting, and Health Analytics in the Master of Science in Analytics program. He is a 20-year predictive analytics industry veteran who enjoys using unstructured and structured data to forecast and influence behavioral outcomes in healthcare, retail, finance, and transportation. His current focus areas include health risk stratification and chronic disease management using machine learning, and production deployment and monitoring of machine learning models. Arnab has published book chapters and refereed papers in numerous Institute of Electrical and Electronics Engineers (IEEE) conferences & journals. He has received Best Presentation at American Control Conference and has given talks on data analytics at universities and companies in the US, Australia, and India. Arnab holds MS and Ph.D. degrees in electrical engineering from the University of Southern California, and a B.Tech. in electrical engineering from the Indian Institute of Technology at Kharagpur, India.
The media shown in this article are not owned by Analytics Vidhya and is used at the Author’s discretion.
Top 100 Data Science Interview Questions & ...
Top 10 Data Analytics Projects with Source Codes
Data Validation in Machine Learning is imperati...
Four Data Engineering Fundamentals All Data Sci...
Data Analytics vs Data Analysis, Are they similar?
Importance of Cross Validation: Are Evaluation ...
A-Z Guide to 110 Data Science Terms
What is Data Quality in Machine Learning?
Chain of Verification Implementation Using Lang...
Tryst with Deep Learning in International Data ...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
This Blog is very Informative. Thanks for Sharing.
This is a nice blog about Data Validation and Data Verification, where data validation checks that the data is correct, while data verification checks to see if it is accurate. Thank you for sharing.