What are GENERATIVE ADVERSARIAL NETWORKS and what are GANs used for?
A generative adversarial network is a subclass of machine learning frameworks in which when we give a training set, this technique learns to generate new data with the same statistics as the training set with the help of algorithmic architectures that usestwo neural networks to generate new, synthetic instances of data that is very much similar to the real data and GANs were designed in 2014 by Ian Goodfellow and his colleagues.
GANs are usually trained to generate images from random noises and a GAN has usually two parts in which it works namely the Generator that generates new samples of images and the second is a Discriminator that classifies images as real or fake for example we can train a GAN model to generate digit images that look like hand-written digit images from the MNIST dataset and apart from this GANs are widely used for voice generation, image generation or video generation.
Generator: A generator is a model that is used to generate new reasonable data examples from the problem statement and
Discriminator: A discriminator model is a model that classifies the given examples as real (from the domain) or fake (generated).
Hey there! Get ready for an epic adventure at the DataHack Summit 2023! From August 2nd to 5th, we’ll be taking over the prestigious NIMHANS Convention Center in vibrant Bengaluru, and we want YOU to join us! Picture this: mind-blowing workshops, insights straight from industry experts, and a chance to connect with fellow data enthusiasts like never before. This is your ticket to staying ahead of the curve, keeping up with the latest trends, and unlocking endless possibilities in the thrilling world of data science and AI. So mark those calendars, secure your spot, and get ready for an unforgettable experience at the DataHack Summit 2023. Click here for more details!
What makes Generative Adversarial Networks (GANs) so popular?
There are a variety of reasons why fans are so exciting and one of them is because GANs were the first generative algorithms to give convincingly good results also they have opened up many new directions for research and GANs themselves is considered to be the most prominent research in machine learning in the last several years, and since then GANs have started a revolution in deep learning and this revolution has produced some major technological breakthroughs in the history of computer science and artificial intelligence.
There’s an array of auxiliary reasons for the excitement over GANs, we will discuss them below:
The first and the best thing about GANs is their nature of learning that is they tend to follow powerful unsupervised learning that is why GANs don’t need labeled data and it makes GANs very powerful and easy to understand as the boring work of labeling and annotating the data is not required.
Secondly, they proposed a generative model which can generate high-quality natural images that develop gradually to generate more and more realistic looking data by coupling with an adversarial network. This framework not only has the possibility of generating very high-quality synthetic data but also it can be used to enhance pixels in photos, generate images from the input text, conversion of images from one domain to another, change the appearance of the face image, and many more, the list just goes on.
Thirdly, suppose a scenario when you don’t have ample data for a problem you are working on, in that case, you can use adversarial networks to “generate” more data, instead of resorting to the tricks like data augmentation and not only this, there are many tasks which intrinsically require the realistic generation of samples from some distribution and in such cases, GANs have proved to be very much useful.
Most of the Generative models and GANs, in particular, allow machine learning to work with multi-modal outputs, that is when we have many tasks to perform, in such cases a single input may have a close similarity to many different correct outputs, each of which is acceptable.
Another reason for GANs being so popular is the power of adversarial training which tends to produce much sharper and discrete outputs rather than blurry averages that MSE provides and this has led to several applications of GANs such as super-resolution GANs which is used to perform better than MSE and various other loss functions in trend.
Last but not least the endless research put around GANs is so mesmerizing that it grabs the attention of every other industry, we will see some major technological breakthroughs in the history of GANs that made them prominent.
Generative adversarial networks (GANs) have been improved over the years and despite all the hurdles brought by this past decade of research, GANs have generated content that will become increasingly difficult to distinguish from real content and comparing image generation in 2014 to today, the quality was not expected to become that good and if the progress continues like this, GANs will remain a very important research project in future provided the acceptance of GANs and their applications by the research community.
We don’t know “what GANs can do for us”, as we are still talking about “what we can do for GANs” to make them more stable but the future of GANs looks bright for humanity, and as a matter of fact, within no time, we could see machine-generated code, music, videos, and even essays and blogs, however, I can assure you that this blog post wasn’t written by a GAN (or was it?).
The results of Text, Video, and Audio applications of GANs have not been as compelling as in images and videos but we have seen the most success in the visual domain as GANs have so far shown very impressive results on tasks such as transforming low-resolution images to high-resolution images that were difficult to perform using conventional methods such as deep learning and CNNs, and was previously considered quite a challenging task but now GAN architectures, such as SRGANs or pix2pix, have shown the potential of GANs for solving this issue, and other GAN architectures like StackGAN network has also proved to be useful for text-to-image synthesis tasks, so it is not surprising to see GANs taking hold of the future.
GANs have been used to produce data in the medical field, on which other AI models will train to invent treatments for rare diseases that haven’t received much attention to date and researchers can train the generator on available drugs dataset for existing illnesses for generating new possible treatments for incurable diseases by proposing an adversarial autoencoder (AAE) model for the identification and generation of new compounds based on the available biochemical dataset. Many scholars and researchers from prestigious universities and labs are actively working on drug discovery programs in cancer, dermatological diseases, fibrosis, Parkinson’s, Alzheimer’s, ALS, diabetes, sarcopenia, and aging using GANs.
One interesting application will be seen in the dental department, where it is believed that researchers are manufacturing dental crowns with the help of GANs which will in turn speed up the whole process for the patient because the procedure which took weeks before could now be done with high precision in just a few hours.
GANs are also being used for improving augmented reality (AR) scenes in some scenarios such as incomplete environment maps can be completed using the creative generation capabilities of GANs by learning the statistical structure of the world. It also handles other AR-related use cases of GANs that involve environment texturing such as enabling, lighting, and reflections.
One more use case where GANs will prove their existence is for generating training data to be used in low-data regimes. Using GANs it’s possible to mix two sources of data for generating more realistic and useful training data, for instance, a research team at Apple showed that you can use a large amount of unlabeled data and feed it to a refiner powered by GANs, which can be then trained to generate more realistic training data given some base labeled synthetic data and this technique can reduce the cost of generating supervised datasets and help on a variety of machine learning tasks that weren’t addressed before.
There are many interesting research topics involving GANs which includes improving disentanglement, applying contrastive learning, and training more stable GANs, that are yet to be dealt with with the help of various building tools that help practitioners and researchers easily go from proof of concepts to real-world applications and this will inspire more creative use of GANs in future.
Differential private GANs are an important topic to be researched where data privacy is concerned and there are great opportunities for training more efficient models for fast rendering of data and for supporting the multimodal types of data which is the case with hard problems like self-driving vehicles.
Last Words: Last year alone we saw several interesting experiments involving GANs which included, advancements in deep learning techniques, GANs being used in commercial applications, maturation of the training process of GANs, and many more.
The evolution of GANs according to the Facebook AI research director Yann LeCun is the most interesting idea of the decade and it is somewhat long and winding, and very much continues to this day as they have their deficiencies, but GANs remains one of the most versatile neural network architectures in use today and continues to evolve and grow with time.
Before you go, I’d like to reiterate DataHack Summit 2023, where a lineup of mind-blowing workshops has been curated! From Mastering LLMs: Training, Fine-tuning, and Best Practices to Exploring Generative AI with Diffusion Models and Build Scalable Machine Learning Model (and so much more), these workshops are the holy grail of unlocking immense value. Just imagine diving headfirst into immersive, hands-on experiences that will equip you with practical skills and real-world knowledge you can implement straight away. But wait, there’s more! You’ll also get the chance to mingle with industry leaders, creating connections that can launch your career to new heights. Grab your spot and register now for the highly anticipated DataHack Summit 2023.
If you are reading this blog, I am sure that we share similar interests and will be in similar industries. I have worked on various projects which involve ML/AI/CV and also written blogs on various platforms to share my knowledge regarding the same. Let’s connect on my social media platforms:
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.