This article was published as a part of the Data Science Blogathon.
ETL pipelines look different today than they used to decades ago. Much of the architecture and data surrounding ETL have changed. Many companies still believe in creating their own framework for data pipelining and not utilize the existing tools even though that requires a wide range of skills. The traditional way of performing ETL is by doing it manually with code and it is not a single person job. Traditional ETL might be considered a bottleneck, but that doesn’t mean it’s invaluable. Let’s understand the current scenario here!
As data enthusiasts, we all must have frequently come across this term while dealing with data on an everyday basis right? Typically Data engineers handle all this work this but even data analysts, data scientists, and business intelligence engineers are required to have hands-on experience. Not all companies will provide clean data to directly perform analytics and reporting, some will expect to collaboratively work with Data engineers in creating scalable and efficient end-end data pipelines.
Large companies especially hire ETL developers, ETL specialists who only manage data integration and design the data storage for them. The 3 step process looks simple but behind the scenes, there are hundreds of extremely cumbersome things to handle the extraction of data from various sources especially the data itself has become much bigger and messier.
It is the most challenging part of the entire data pipeline and cannot afford to mishandle crucial information before going to the next step. After transforming the clean and validated data into the desired form, it is safe to store it in the data warehouse for analytics and data modeling purposes. Various risks are involved during the initial stages of the production phase and that’s why they are paid more. Knowing the data in and out is the basic foundation for any data-related role and it is mandatory to have a basic idea of using the data smartly with the available resources.
There are different workflows in data pipelining and can be done in 2 ways:
A no-code ETL platform requires little to no coding. Tools provide user-friendly GUIs with various functionalities to create a data map. Once the data map is complete, the teams just have to run the process and the server will do its job. The process is easy to understand by the clients and easy to maintain. It is scalable and saves a lot of time and money for the companies handling real-time datasets. The logic is reusable for any data source and there are custom data manipulation features. There are subscriptions and pay-per-use ETL services to run on a cloud server with millions of data. So, the company needs to choose the tool wisely according to the use-case and requirements of the customer.
Even non-technical employers need to be trained to schedule the workflows, jobs, and tasks in order to get acquainted with the tool. There are companies encouraging no-code practices to develop various products.
“According to the IT research firm Forrester, the low-code development platform market will reach a value of $21.2 billion by 2022, growing at an annual rate of 40 percent. What’s more, 45 percent of developers have already used a low-code platform or expect to do so in the near future.” [1]
Coding your own extraction pipeline is tempting but difficult at the same time. Writing python scripts to extract, transform and load data even in a cloud environment is adapted by many companies. Any type of customizations to the code can be made if something is not available in the existing ETL solution. Coding our own ETL can be a huge benefit in terms of performance optimization and flexibility. If there is an expert data engineer on board who knows ETL processes, it is possible to fine-tune the ETL process to run as smoothly as possible. Tedious coding is useful in self-services where one can independently perform data preprocessing.
Issues? Changing the code and maintaining scripts can be a huge problem if the ETL doesn’t function well for complex schemas. Automating the manual ETL requires other tools like Selenium, Windows Task scheduler to automatically run scripts on a daily/weekly basis to store data in excel or a database. Hence they are built for a specific set of users and data operations.
If you like experimenting with data manually by checking all the errors and normalizing the data then implementing various python and R packages is a good way to go. Even writing SQL queries can be interesting and challenging to extract information from messy data. This can help to deeply understand the logic behind data wrangling from scratch rather than starting off with a tool first.
Bottom Line: It all depends on various parameters like the size of data, memory, and budget to choose the optimal solution for business problems. Also, the choice of ETL approach varies with technical and non-technical expertise level in a company.
This is a quite debatable topic and both have their advantages and disadvantages. ETL tools are not dead but also not preferable by all. One might end up now with an unnecessary overhead of using an ETL tool where it’s not needed, that also hosts business logic that is not transferable outside of the ETL tool. But the skills developed while creating ETL pipelines using Python or SQL will always stick together in coming years.
Current ETL tools might go out of fashion and adapting to new ones can be difficult for some people. So even tools can become a hassle for a company if not utilized properly. Irrespective of no-code or manual ETL, the whole process itself is complicated but also very interesting to learn.
Which one is your favorite? Do let me know in the comments!
Thank you for reading this article.
[1] How low-code platforms are transforming software development
About the author:
Saloni Somaiya works as a Data Scientist at a healthcare startup in the United States. She pursued Masters in Information Systems from Northeastern University, Boston. She enjoys reading articles and exploring new technologies. She is willing to contribute more to Data Analytics and Science field.
LinkedIn: https://www.linkedin.com/in/saloni-somaiya/
The media shown in this article are not owned by Analytics Vidhya and is used at the Author’s discretion.
Top 10 Data Analytics Projects with Source Codes
Step-by-Step Exploratory Data Analysis (EDA) us...
An Introduction on ETL Tools for Beginners
A Complete Guide on Building an ETL Pipeline fo...
Data Integration: Strategies for Efficient ETL ...
The Ultimate Guide To Setting-Up An ETL (Extrac...
Choosing the Top 15 ETL Tools of 2025: Comparis...
Unlock the True Potential of Your Data with ETL...
Pandas Vs PETL for ETL
Difference Between ETL and ELT Pipelines
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Thank you for the post. Coming from a non-data science background but as someone who has heard the terms but never worked in Data Warehousing this was a good comparison and overview of No-code ETL vs Manual ETL.
or you can combine both approaches, ETL and coding in a tool like Omniscope Evo