If you have a basic knowledge of tech, you must have come across the terms: Data Analytics and Data Analysis. Have you ever thought of the difference or the similarity between them? Many times people have a misconception that both are the same. Where do you stand in this argument? Do you think they are the same or similar?
The answer is ‘No! they are not the same. They have considerable differences between them like the two chutneys: Onion Chutney and Coconut Chutney. They both are used as a side dish for the well-known South Indian dish Idli. Since both are chutneys in general that doesn’t mean they are the same in-depth. Without Idli, there is no worth for both. Similarly, there is not much importance for both the terms Data Analytics and Data Analytics without the Data.
Literally, “Analysis” is the detailed examination of the elements or structure of something. On the other side “Analytics” is the systematic computational analysis of data or statistics. In detail, Data Analytics is a wide area involving handling data with a lot of necessary tools to produce helpful decisions with useful predictions for a better output, while Data Analysis is actually a subset of Data Analytics which helps us to understand the data by questioning and to collect useful insights from the information already available.
In simple terms, Data Analytics is the process of exploring the data from the past to make appropriate decisions in the future by using valuable insights. Whereas Data Analysis helps in understanding the data and provides required insights from the past to understand what happened so far.
Now let’s have a small and quick discussion in between this discussion to know why they are the hot tech topics in recent days. Both the concepts run around the information called the Data. Everyone knows that Data is a collection of information, but nowadays information is the richest wealth when compared to all the other wealth including Gold, Diamond, Fuel, etc.
It is because, with Data, one can rule the world only if they know how to use it. Even the world-famous tech giants like Google, Microsoft, Amazon, and other companies collect data and analyze it for various purposes, primarily to improve customer’s feed by analyzing customer preferences and their mindsets, the reason is customers are the wealth givers for any commercial industry.
That’s why the craze for handling, understanding and effectively analyzing the data is increasing like a summer temperature nowadays. And hence the craze behind the two terms of our discussion Data Analytics and Data Analysis and they have become one of the notable hot topics in the tech world in this twenty-first century.
Understanding the insights hidden behind the datasets, the analysis and analytics patterns play a major role in fetching and showcasing a lot more about the data, they attain various transformations and cross numerous stages to produce valuable output.
The journey of Data Analytics consists of various stages including identifying the problem, finding the Data, Data Filtering, Data Validation, Data Cleaning, Data Visualization, Data Analysis, Inference, Prediction, etc. The most common tools employed in Data Analytics are R, Python, SAS, SPARK, Google Analytics, Excel, etc.
Similarly, the journey of Data Analysis comprises Data gathering, Data validation, Interpretation, Analysis, Results, etc., shortly it tries to find what the data is trying to express. The most common tools employed in Data Analysis are Tableau, Excel, SPARK, Google Fusion tables, Node XL, etc.
Analytics is commonly used in many distinct ways to find some strange patterns like finding the preferences, compute various correlations, trend forecastings, etc. The most common real-life findings found through analytics are market trend forecastings, customer preferences, and effective business decisions.
With the help of Analysis, it is quite simple and easy to explore more valuable insights from the available data by performing the various types of Data Analysis such as Exploratory Data Analysis, Predictive Analysis, and Inferential Analysis, etc. They play a major role by providing more insights in understanding the data.
In general, the outputs from the Data Analysis are the affordable equipment for a user to understand the actual reality behind the Data and also easy to produce better pictorial and graphical representations in the presentation to make even an illiterate understand the information hide behind the dataset much better and quicker.
But it is quite struggling for a common person to understand the analysis and process made by the Analytics person to produce predictions and the inference. Because the post-process like creating something new from the dataset for producing a better and expected output may be difficult for a third person to understand without similar background.
Let’s try to understand the concepts with the following real-life examples,
Example 1:
Almost every one of us has at least some little knowledge about the Share Market. Just think if you are a beginner and you want to start your trade with some profit there. Now say what you will do initially?
Most probably before starting trading you just try to examine the past trend records of the shares in the share market to understand what happened so far in order to frame your strategies to get more profit right? This kind of process is an example of Data Analysis.
After understanding the trend of the shares, now you may use different techniques to predict the future price trend of the shares, and based on that you buy some shares right? This is an example process of Data Analytics.
I hope you should gain some more extra knowledge about the difference between Data Analytics and Data Analytics. I believe I’ve given some useful insights for you to enrich your tech desire.
I request you to share your valuable thoughts about this article. It will be more useful for me during my future works.
I’m Shankar DK, a Data Science student. Connect with me on Linkedin https://www.linkedin.com/in/shankar-d-k-03470b1a2
The media shown in this article are not owned by Analytics Vidhya and is used at the Author’s discretion.
Top 10 Data Analytics Projects with Source Codes
Top 10 Must Use AI Tools for Data Analysis [202...
An Introductory Guide to Big Data Analytics
What is Business Analytics and which tools are ...
The Origin of Big Data Analytics
Startups bringing analytics and data science cl...
What is Data Analytics? How to Use it in Your C...
Understanding Data Science from a Beginner̵...
Data Science vs Data Analytics: Which One Will ...
Business Analytics vs. Data Science – Whi...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s
Wonderful Article. Concise explanation of the difference. Though I would have loved it more if you used an example that would relate with an illiterate farming. Maybe an example in farming or trading in the market.
This was really helpful, very nice content. Thank you.
Big gap which not difficult to grasp such idea of what the work load, Technical expert about writing complex scripts and examine the data in typical technical fashion which is sure basis of Big O notation on oyher hand Analysis has domain or business expert right now Professionals which not necessary an expert of computer science easily manipulate with data for their forcaster of their business need.