This article was published as a part of the Data Science Blogathon
Docker is a platform that deals with building, running, managing, and distributing applications by using containers. Don’t worry if you are hearing the term ‘container’ in this context for the first time. You could imagine it as a software unit that contains the application code, required libraries, and other dependencies needed for the application that you want to build.
Let us suppose that we have two different Python applications that we want to host on a single server (either a physical machine or a virtual machine). Let us further assume that these two Python applications need different versions of Python and different libraries and dependencies. Since it is not possible to have different versions of Python installed on the same machine, we would either need two different physical machines or a single physical machine that is powerful enough to host two virtual machines. Both the solutions would incur quite a huge cost.
In order to avoid this cost and have an efficient solution at the same time, we could use a docker. The machine on which you wish to run and install the docker is known as the ‘Host’.
https://www.aquasec.com/cloud-native-academy/docker-container/
To deploy the applications on this host, we can create Docker containers that would contain everything needed to run the applications. These containers would not have their own operating system. The kernel of the host’s operating system would rather be shared across the multiple containers that we create. This makes these containers isolated from each other.
Docker Engine is an open-source containerization technology for building and containerizing applications. It works as a client-based application and has a Server, REST API and Client as its core components.
The Server runs a Docker Daemon which is nothing but a process that enables managing docker images, containers, networks, and storage volumes. Users can interact with it using the Docker Client.
An API used by the applications to interact with the Docker Daemon, that can be accessed through an HTTP client.
https://www.aquasec.com/cloud-native-academy/docker-container/docker-architecture/
Users can interact with the Docker Daemon using Docker commands through this command-line interface client.
A docker image is a template that consists of the application and all the other dependencies needed for running the application on Docker.
A running instance of the docker image is known as a docker container.
Docker hub is an online repository wherein ready to use docker images are available.
Docker Desktop can be installed for your Mac or Windows environment from the following link –
https://docs.docker.com/desktop/
This command creates a new container over the specified image.
$ docker create ubuntu
The above command enables creating a container using the latest Ubuntu image.
This command is used to start any stopped container. The command below enables starting the container whose container ID starts with 70257.
$ docker start 70257
This command is used to stop any running container. The command below enables stopping the container whose container ID starts with 70257.
$ docker stop 70257
This command is used to create a container and then start it.
$ docker run ubuntu
The above command enables creating a container from the latest Ubuntu image and then start running it. If we want to interact with the created container, we could specify ‘-it’ before the docker run command:
$ docker run -it ubuntu
This provides us with the terminal to interact with the created Ubuntu container.
root@e4e633428474:/#
This command is used to delete a container.
$ docker rm 70257
The above command enables deleting the container whose container ID starts with 70257.
This command enables viewing all the containers running on the docker host.
$ docker ps
In order to view all the containers irrespective of their running status, we can include ‘-a’ to the above command.
$ docker ps -a
This command enables viewing all the Docker images present on the Docker Host.
$ docker images
Build a docker container with your ML model
Creating a Docker container begins by creating a Dockerfile. A Dockerfile simply put is a text file that has all the commands needed to create the container.
A Docker image has a base image on top of which layers are added with each of the layers adding some dependencies.
FROM continuumio/anaconda3:4.4.0 COPY . /usr/app/ EXPOSE 5000 WORKDIR /usr/app/ RUN pip install -r requirements.txt CMD python flask_api.py
In the code above, we started with a base image of Anaconda. The COPY command is used to copy all the files from the current directory to the specified directory. The EXPOSE command tells Docker to get all its needed information from the specified port during runtime. The WORKDIR command defines the working directory of the container at any time. The next command is for running the requirements.txt file which installs all the required python dependencies. The last command is used to run the flask_api.py file. This file can contain a trained ML model which can be used to predict new data. This file would serve all API requests and hence would contain a function that can be called by an API endpoint.
In order to build a docker container from the created Dockerfile, we need to run the docker build command that builds the image as per the instructions given in the Dockerfile.
$ docker build -t IMAGE_NAME:TAG .
In the above code, the image name is given by the user along with a tag. Tagging an image is equivalent to giving an image an alias which helps in distinguishing different versions of the image.
We can test the container we created on our local machine at this point by running the following command:
$ docker run IMAGE_NAME:TAG
Nibedita completed her master’s in Chemical Engineering from IIT Kharagpur in 2014 and is currently working as a Senior Consultant at AbsolutData Analytics. In her current capacity, she works on building AI/ML-based solutions for clients from an array of industries.
Nibedita completed her master’s in Chemical Engineering from IIT Kharagpur in 2014 and is currently working as a Senior Data Scientist. In her current capacity, she works on building intelligent ML-based solutions to improve business processes.
How To Containerize Your Data Science Workflow ...
A Complete Guide for Deploying ML Models in Docker
A Complete Guide on Docker for Beginners
Detailed Insight on Docker for Beginners
End-to-End Guide to Docker for aspiring Data En...
Containerized Your Machine Learning WorkFlow Wi...
20+ Docker Commands for Building, Running, and ...
Understanding the Basics of Docker Container Ne...
Deploy Machine Learning Models leveraging Cherr...
A Step Towards Reproducible Data Science : Dock...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s