Regression is a statistical term for describing models that estimate the relationships among variables.
Linear Regression model study the relationship between a single dependent variable Y and one or more independent variable X.
If there is only one independent variable, it is called simple linear regression, if there is more than one independent variable then it is called multiple linear regression.
It is modelling between the dependent and one independent variable. When there is only one independent variable in the linear regression model, the model has generally termed a simple linear
regression model.
The basic algorithm to predict values for all machine learning models is the same.
Hypothesis
Now let’s consider a model with one independent feature(x) and a sample training set where the dependent feature is the size of the house(x) and the prediction is the price of the house(y).
As we know that in this case (y) is linearly dependent on (x) hence we can create a hypothesis that can be resembled the equation of a straight line (y=mx+c).
To analyze the behaviour of the formed hypothesis, assume the value of (θ₀)=2 and (θ₁)=5/8.
Here (θ₀)and (θ₁) are also called regression coefficients.
Below is the graph showing the sample dataset and hypothesis.
Now we have a major question in our mind: how to correctly choose the value of (θ₀) and (θ₁) so that our model will be accurate or predict values more precisely. So for this, we need to look at the terms which can be minimized to get the most accurate results.
The first thing which we can do is to reduce the error /difference between our hypothetical model’s predictions and the real values,
so we want to minimize the function for each valid (i), where (i) denotes a valid data entry in our data.
If we want to minimize the error for every value, then we need to minimize
where (m) is the number of records present in our dataset
form this we can say that we need to reduce the squared error of the hypothetical model.
So let the squared error function be called as cost function (C) which has 2 dependent variables (θ₀) and (θ₁) and our goal is to minimize this cost function(C), for this, we will use batch gradient descent.
Gradient Descent
The technique helps to find optimal (θ₀) and (θ₁). Here is how it helps in finding the minimum cost function (optimal values of (θ₀) and (θ₁)).
Pick random values of (θ₀) and (θ₁).
Keep on simultaneously updating values of (θ₀) and (θ₁) till the convergence.
If the cost function does not decrease anymore, we reached our local minima.
One important thing to note is that the value of (θ₀) and (θ₁)must be increased simultaneously which means that we can separate the values of (θ₀) and (θ₁) and update them later
If the values don’t get updated simultaneously then, for ex: the equation of (θ₁) will get the updated value of (θ₀) and thus will provide incorrect results.
Plotting
Let us first visualize using only 1 feature say (θ₁).
We will plot a graph comparing changes in C(θ₁) with changes in (θ₁).
As we can see here the rate of change of (θ₀) and (θ₁) depends on what is the learning rate (α).
Now, the question is how do we choose a proper value of learning rate (α) for our model?
If the value of (α) is too low then our model will consume time and will have slow convergence.
If the value of (α) is too high then our (θ₀) and (θ₁) may overshoot the optimal value and hence accuracy of the model will decrease.
It is also possible in the high value of (α) that (θ₀) and (θ₁) will keep on bouncing between 2 values and may never reach the optimal value.
Generally, the value of (α) then depends on a range of our dependent variables.
We can’t have the same value of (α) for x ranging from 1 to 10,00,000 and 0.01 to 0.001.
So it makes sense to choose the value of (α) relative to (x). In most of the cases, (α) = x * 10 ^(-3).
Also, one thing to notice here is, even by putting the constant value of (α), the change in the value of (θ₀) and (θ₁) will decrease in every step because the slope of gradient descent will be decreasing as values of (θ₀) and (θ₁) approaches to minimum values.
The plot of the Cost function (C) vs several iterations taken to reach minima must be like the graph shown below. Here around 500 iterations will be taken by the model to reach the approximate minima and after that, the graph will eventually flatten out.
If any other graph is plotted not similar to this, then (α) must be reduced.
Generally in plotting a graph of 3 axes (C(cost function), (θ₀),(θ₁)), we will get a bowl-shaped graph, hence there will be only 1 minimum in the entire plot.
For ease of visualization, we plot the contour graph of the following data, the contour will have a unique centre because of the single minima present in the graph and the centre of the contour plot will give us an optimal value of (θ₀) and (θ₁).
So now we have all the necessary equations and values to make a hypothesis that best fits the Linear Regression problem.
To improve the model, we can make 2 modifications.
Learn with a larger number of features (Implement Multilinear Regression).
Solve for (θ₀) and (θ₁) without using an iterative algorithm like gradient descent.
Multi Linear Regression
In MLR, we will have multiple independent features (x) and a single dependent feature (y). Now instead of considering a vector of (m) data entries, we need to consider the (n X m) matrix of X, where n is the total number of dependent features.
So let us extend these observations to gain insights on Linear regression with multiple features or Multi-Linear Regression.
Firstly our hypothesis will change to n features now instead of just 1 feature.
But firstly in the case of Multiple Linear Regression, the most important thing is to make sure that all the features are on the same scale.
We do not want a model where one feature varies from 1 to 10000 and the other in a range of 0.1 to 0.01.
hence it is important to scale the features before making any hypothesis.
Feature Scaling
There are many ways to achieve feature scaling, the method which I am going to discuss here is Mean Normalisation.
As the name itself suggest, the mean of all features is approximately 0.
The formula to calculate normalized values is
Where (u) is the average value of (X₁) in the training set,(S₁) is the range of values.
(S₁) can also be chosen as Standard Deviation of (X₁), the values will still be normalized but the range will change.
In MLR now our cost function will be modified to
And the Gradient descent simultaneous update will change to
Normal Equation
We know that batch gradient descent is an iterative algorithm, it uses all the training set at each iteration.
But gradient descent works better for larger values of n and is preferred over normal equations in large datasets.
Instead, Normal Equation makes use of vectors and matrices to find us minimum values.
in our hypothesis, we have values of (θ) as well as (x) ranging from 0 to n, so we create vectors individually of (θ) and (x) and our hypothesis formed will be,
To find minimum values of (θ) to reduce the cost function, and skipping the steps of gradient descent like to choose a proper learning rate (α), to visualize plots like contour plots or 3D plots and without feature scaling, the optimal values of (θ) can be calculated as
Key features of Normal Equation
No need to choose learning rate (α)
No iterations
Feature scaling is not important
Slow if there are a large number of features(n is large).
Need to compute matrix multiplication (O(n3)). cubic time complexity.
gradient descent works better for larger values of n and is preferred over normal equations in large datasets.
We can also extend the concept of multilinear regression to form our base for the polynomial Regression.
Conclusion
In conclusion, for our model to perform accurately using gradient descent, values of (θ₀),(θ₁), and (α) play a major role. There can be many techniques as a normal equation which is comparatively easier to implement is used to find correct values of (θ₀) and (θ₁) but the most accurate result in a larger number of features is achieved by using Gradient descent.
Hope this article provided some new insights and an idea of how a simple looking model like linear regression is supported by pure mathematical concepts!
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.