This article will support data scientists in furthering their studies on recommendation systems so that they can develop applications for professional use. We introduce the content-based filtering, for the recommendation system, using this filtering, we learn here how to use this system and how to predict items, we use an amazon dataset.
In recommendation systems, we have two techniques, In this bog we major focus on content-based filtering.
Collaborative Filtering.
Content-based Filtering.
Today in real-world recommendation systems are an integral part of our lives. In amazon Roughly 35% of revenue is made by a Recommendation system, hence we can say the Recommendation system contributes to the major chunk of revenue in amazon. Working on recommendation algorithms is one of my favourite things to do. When I come across a recommendation engine on a website, I immediately want to dissect it and, how it works. It’s one of the many perks of a data scientist!
Collaborative Filtering
In this filtering, we use user and item reviews and then using this review we find a common user who has the same interest-as other users.
Content-based Filtering
Content-based filtering we recommend to what the user likes, based on their interest.
Here we will focus on a content-based Recommendation System and we understand using real-life data,amazon-apparel dataset.
Source: Wikipedia
Table of Contents
Table of Contents:-
1. What is the Recommtations system?
2. Overview of the data.
3. Data preprocessing.
5. Text Preprocessing.
6. Apply the different techniques to convert text to vector.
7. Measuring the effectiveness of the solution.
What is the Recommendation System?
Let’s take one real-life example. all of the done shopping on Amazon. So when you search for one product and then amazon shows a similar item. In nutshell, we can say this similar product is nothing but it is a recommendation system for you, so it’s all about a recommendation. But, how a recommendation system works? We will learn about it in this blog. To understand better we take an amazon woman apparel dataset.
Overview of Data
Here we have an item title, brand name, the colour of the item, price of the item, etc. Using an amazon API we take data from amazon, we have a total of 183k datapoint(product) and 19 features available here.
The Feature List
data.columns # prints column-names or feature-names.
Of these 19 features, we will be using only 6 features in this blog
1. asin ( identification number)
2. brand ( brand to which the product belongs)
3. color ( Color information of apparel)
4. product_type_name (type of the apparel, ex: SHIRT/T-SHIRT )
5. medium_image_url ( URL of the image )
6. title (title of the product.)
7. formatted_price (the price of the product)
data = data[['asin', 'brand', 'color', 'medium_image_url', 'product_type_name', 'title', 'formatted_price']]
print ('Number of data points : ', data.shape[0],
'Number of features:', data.shape[1])
data.head() # prints the top rows in the table.
Source: Author’s GitHub Profile
Data Preprocessing
For the data preprocessing we remove all the datapoint where feature value is not present.
After the remove datapoint where colour and price value is null and after this we have 28k datapoint available.
Remove some text from the title
Eg of duplicates data points:
Titles 1:
16. woman’s place is in the house and the senate shirts for Womens XXL White
17. woman’s place is in the house and the senate shirts for Womens M Grey
Title 2:
25. tokidoki The Queen of Diamonds Women’s Shirt X-Large
26. tokidoki The Queen of Diamonds Women’s Shirt Small
27. tokidoki The Queen of Diamonds Women’s Shirt Large
Here we have some title that looks like this where the meaning of the title is the same, except the few words. from the eg titles1 where we can show
both titles is the same they talk about the same shirts, the only difference is the size of shirt.
so here we remove this type of data title.
Remove the same Image.
There is some image is available where the product is the same but different only that is product colour. So, we remove that product where the product is the same but the colour is different.
.
Source: Author’s GitHub Profile
Text Preprocessing
Here we have the product title and to convert this title into vector first we have to do text processing.
Remove the stop word
# we use the list of stop words that are downloaded from nltk lib.
import nltk
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))
print ('list of stop words:', stop_words)
from nltk.stem.porter import *
stemmer = PorterStemmer()
print(stemmer.stem('arguing'))
print(stemmer.stem('fishing'))
Output.
argu
fish
Apply the Different Techniques to Convert Text to Vector
TF-IDF Base Word to Vector
Here we use a TF-IDF to convert a text to a vector and after this, we got a vector for each title.
Source: Towards Data Science
Now we have a vector and for this find, similarity we use a Euclidean distance, which product dist is very small to the query product we can defined-as a similar product.
Here we have two categorical feature which is colour and brand, so we think we use only a brand and a feature and make a similarity or product. So for the categorical data, we use one-hot encoding to convert it into a vector.
After this, we use euclidean distance and find a similarity.
Source: GitHub Profile
Here we can see this is more focused on colour and brand.
Image similarity
We have a product image so we use it to find a similar product and for converting images, to vector data we use deep learning.
we use a CNN (VGG16) to convert images to vectors. Now after this, we find a distance and predict a similar product.
Till the time we take each feature and find a similar product, now we use all the features and find a similar product and using all features they give much more efficient result.
Measuring the Effectiveness of the Solution
So here we provide 5 solutions for finding a similar product, we can perform A/B testing.
For more about A/B testing. https://en.wikipedia.org/wiki/A/B_testing
For full code:- https://github.com/shivambaldha/Amazon-Apparel-Recommendations
Conclusion
Recommendation systems are a powerful new tool for adding value to a company and, These systems assist users in locating things they wish to purchase from a business. Recommendation systems are quickly becoming a critical element in online E-commerce.
•I have completed many Machine Learning and Deep Learning projects in the last 1 year studying with Applied Ai, and I got
hands-on experience in building Machine learning models, and I learned how to tackle any problem and how to represent any
problem to an ML problem.
•Data Scientist/ML-Engineer with strong math and computer science background, have practical Experience in deploying and
Making Predictive Models, implementing data processing, and Machine Learning Algorithms to solve challenging business
problems.
•Also, have Hands-on Model-Building Skills for deep learning techniques with practical experience with TensorFlow/Keras
Library and training models-API using custom data.
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Your blog is very helpful for me..
Heyy it’s nice and good blog
[…] To more about a recommendation system and content-based filtering click here. […]