This article was published as a part of the Data Science Blogathon.
Have you ever wondered how a person or a bank is notified of the wrongful transaction of his credit card, like how did system can notify that particular person or the bank about the transaction, which will help save his money by blocking that particular card immediately? This process is called Anomaly Detection (Outliers). Here, the credit card example comes under the fraud detection problem.
Outliers are the Data Points which lie outside the overall distribution of the dataset; outliers will have a huge impact on the results of any kind of analytics, from the basic analysis to model building. A few models are sensitive to outliers like Linear Regression etc. Even if we are trying to draw some insights from the data, removing the outliers before the analysis will make the result statistically significant.
Anomaly detection is a process which helps to find the Outliers in a dataset here; the process assumes that data will be in a certain range based on the data we have; if any data point is far away from that particular range, that will be considered as the Outlier it is one of the primary steps of Data Cleaning.
In today’s world, lots of data is generated, and monitoring the data is a crucial task where anomaly detection will help us to find any occurrence of the error; monitoring the error explains to us the origin of the error and helps us to inform the error so that the necessary action will be taken.
Anomaly Detection is commonly used for:
There are quite a few techniques to detect the outlier. Let’s discuss one of my favourite techniques called THE FIVE NUMBER SUMMARY.
The five-number summary is a descriptive statistic with the help of five values; we can describe the data here. The five-number summary deals with the interquartile range (IQR), which helps to find the outliers in the dataset.
Source: Statistics How to
Another popular technique for anomaly detection is the Isolation forest, an unsupervised anomaly detection technique which is similar to the Random forest, which is constructed based on multiple decision trees; the isolation forest works with the principle that the anomalies are the observations which are different from the data points we have, it follows the approach of processing the samples and randomly selected features to find the outliers in the data.
The approach of the isolation forest algorithm is to Isolate the outliers from the data with the help of decision trees, Data Attributes are selected randomly to construct the decision trees, and the shortest path of the decision trees is considered as outliers which are easy to isolate from the data this process continues until all the data points are processed. At the end isolation level of each data, the point is noted, and then it generates the anomaly score, which defines whether the particular data point is an outlier or not, if the anomaly score is close to 1, it is likely to be an outlier, and if an anomaly score is less than 0.5 then that data point is not an anomaly.
Source: Machine Learning Geek
PyCaret is the open source learning library in python, which helps us to implement various machine learning tasks more quickly.
PyCaret is very useful. Its low code python library helps us to implement various tasks with few lines of code. Here rather than focusing much on coding our focus will be on experiments.
It is easy to understand and implement almost every task related to the machine learning projects like handing missing values, encoding, feature scaling or hyperparameter tuning.
pip install pycaret
from pycaret.datasets import get_data from pycaret.anomaly import * anomaly = get_data('anomaly') exp_name = setup(data = anomaly)
The setup function is one of the basic functions in pycaret, which is responsible for the data preprocessing tasks like handling missing values, encoding, performing the Train -Test – Split, and all other necessary data preprocessing steps; after initializing the setup function, it shows us the data types of all the features then it processes to the environment which will have the information we need to perform data science project tasks.
iforest=create_model('iforest') plot_model(iforest)
By plotting the model, we will get the interactive 3d plot, which helps us understand every data point’s information clearly.
Iforest_predictions = predict_model(iforest, data = anomaly) Iforest_predictions
Here in the output, we can observe the anomaly detection values and the anomaly scores of the entire data
anomaly=Iforest_predictions[Iforest_predictions['Anomaly']==1] anomaly
From the output, we have filtered the anomaly from the entire data along with their anomaly score so that we can drop them, or we can also filter them based on the 0 anomaly value, which denotes that the data point is not outliers, which helps us to give a better result in any kind of analytics and also used to perform basic analysis or to build a model.
save_model(iforest, 'IForest_Model')
The final step is to save the save_model function allows us to save the entire transformation pipeline for later use shortly, using the Load_model function, we can use the saved model to predict the unseen data.
Anomaly detection is a wide concept; here in this guide, we have discussed a few concepts of anomaly detection and its implementation using Pycaret:
I hope you got a good understanding of anomaly detection with pycaret, share this guide with your network, and kindly let me know if there are any queries or feedback. Connect with me on LinkedIn.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
I am a data driven enthusiast with a curious mind exploring the field of data science, I have the insights into Machine learning and Deep learning , 2 years of hands-on experience in python with libraries such as Sklearn, TensorFlow, Keras, Pandas, Seaborn and NumPy.
Outlier Detection & Removal | How to Detect...
Detecting and Treating Outliers | Treating the ...
Getting familiar with PyCaret for anomaly detec...
Learning Different Techniques of Anomaly Detection
An End-to-end Guide on Anomaly Detection
Dealing with Anomalies in the data
Anomaly Detection in Credit Card Fraud
A walkthrough of Univariate Anomaly Detection i...
Anomaly detection using Isolation Forest –...
Anomaly Detection using AutoEncoders – A ...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s