This article was published as a part of the Data Science Blogathon.
We saw the importance of PEAS representation in the article here. PEAS stands for Performance evaluation, Environment, Actuators, and Sensors. Agents understand their environment through sensors and perform relevant actions using Actuators. The search strategies of the agent decide this “relevant” action. This helps the agent choose the right move to reach the destination. Hence, It is important to compute the path for the agent to serve its purpose. AI uses different Search Strategies to compute the path for the agent.
A simple Tic-Tac-Toe game can have 362880(9!) different states possible, and only a few of them lead us to victory. Similarly, the famous Missionaries and Cannibals problem also has many possible states. Do I even need to say about Chess? Lmao.
Search Strategies are structured ways to solve issues. Rational or Problem-solving agents in AI usually use these search strategies to solve a given problem and provide the best solution.
Search Strategies are majorly classified into two:
Uninformed Search Strategies are search strategies that work in a brute force approach. Uninformed Search Strategy does not have any knowledge except what is defined in the problem’s constraints. They only work by blinding traversing through the different states and finding the path to the destination.
The 4 parameters on which we will evaluate the strategies are:
The 6 Uninformed Search strategies that we will cover today are,
The most popular search method for traversing a tree or graph is breadth-first search, which follows the level order traversing method. The breadth-first search algorithm performs level-by-level searches in a tree or graph. The BFS algorithm begins its search at the tree’s root node and grows every child node at the current level before moving on to nodes at the next level. We use a queue to implement BFS.
The BFS promises to provide a solution (if it exists). But this increases the time and space complexity when the goal states are situated very deep in a tree/graph. A BFS solution by me to the Missionaries and Cannibals problem is here.
A recursive approach for exploring a tree or graph is called depth-first search. The depth-first search begins at the root node, travels down each path until the depth of the tree by expanding one of its children, and then moves on to the next path. We use Stack to implement DFS.
DFS just needs to store a stack of the nodes on the path from the root node to the current node, hence it uses relatively little memory compared to other strategies. Since DFS goes for the depths first, it sometimes enters an infinite loop. Hence, DFS doesn’t ensure a complete solution.
Uniform-cost search can be used when the graphs have weighted vertices. It helps in finding the goal in one of the most optimal ways for a utility-based agent. The idea is to expand the cheapest node every time. This is done so by maintaining a frontier i.e. A priority queue ordered by the path cost(lower states are given higher priority).
Any graph or tree that requires the optimal cost can be solved with it. This strategy sometimes loses itself in an infinite loop as it focuses more only on path cost.
Depth Limited Search is similar to Depth First Search, but it is predetermined with a depth limit (say l). The nodes below the depth l are used as if they have no successors i.e., leaf nodes. This helps us in solving the infinite path problem of DFS. But this, too, can’t assure a complete solution. It may fail when our goal state lies in one of the levels below l.
It recursively moves to traverse the depth of the graph until the limit is reached. If it reaches the limit, it cutoffs and backtracks toward the other nodes for searching.
This is one of the widely used strategies as it looks to combine the benefits of both the DFS and the BFS. This is beneficial for cases when the search space is too large and the solution’s depth is unknown. It starts with depth limit 0 of the tree and explores all its nodes before increasing the limit by 1 every time. This is done until one of the goals is found.
Like DFS, its memory requirements are modest. Like BFS, it promises a complete solution and an optimal one too, when the path cost is a non-decreasing function of the depth of the node.
For a graph/tree with branching factor 10 and depth 5, the Breadth-first search traverses 111,110 nodes in its worst case. At the same time, the iterative Deepening Depth-first search traverses 123,450 nodes.
Bidirectional Search is a two-way search. i.e., one forward search from the initial state and the other backward search from the goal state. We hope the two searches may meet in the middle of one of the states.
The notion of using this search is that b^(d/2) + b^(d/2) is much less than b^d. Replace the goal test and determine whether the frontiers of the two searches intersect, if they do, a solution has been found. A schematic view of a bidirectional search is about to succeed when a branch from the start node meets a branch from the goal node.
The above comparison chart compares the different uninformed search strategies based on the 4 parameters. This helps in understanding and correctly choosing our strategy for our agent to solve the problem we are working for. We can conclude that based on the requirements and expectations from the agent, we can choose a strategy and work accordingly.
What if I told you we could explore to experience and use the heuristics to get better strategies? Let’s see in the next article.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
🎓 I'm a Final-year Undergrad pursuing my BTech in Computer Science from MIT Academy Of Engineering, Pune. As a curious learner, I am also working on my honors in Data Science to expand my expertise in this domain.
Comprehensive Guide to Build AI Agents from Scr...
Top 4 Agentic AI Design Patterns for Architecti...
Informed Search Strategies for State Space Sear...
An Introduction to Problem-Solving using Search...
Introduction to Intelligent Search Algorithms
Uniform Cost Search Algorithm
Best First Search in Artificial Intelligence
State Space Search Optimization Using Local Sea...
Top 10 AI Search Engines to Use in 2025
How Is You.com Set to Kill Google Search?
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s