If you are familiar with databases, or data warehouses, you have probably heard the term “ETL.” As the amount of data at organizations grow, making use of that data in analytics to derive business insights grows as well. For the efficient management of these data, ETL (Extract, Transform, and Load) process is necessary.
AWS helps you perform ETL tasks, especially complex ones, with AWS Glue.
AWS Glue is simply a serverless ETL tool that helps you with the analysis and lets you enjoy the results in minutes. Moreover, you do not have to manage any cloud infrastructure, as it is an automatically managed service that’s fully maintained by AWS.
Now, why is it the choice of Data scientists and analysts?
As a cloud-based tool, it reduces costs and decreases the time spent creating ETL jobs. It also removes all the complex tasks associated with ETL data processing as it associates with various platforms for quick data analysis.
This article covers an overview of AWS Glue, why it is an effective tool in ETL data processing, Glue’s architecture and components, it’s working, and some of its use cases.
What Is AWS Glue?
AWS Glue is a serverless data integration service developed to extract, transform, and load data called the ETL process. Because it is a serverless service, users don’t have to manage infrastructure, configure, scale, or provision resources. Glue provides easy-to-use tools to create and follow up job tasks based on schedule, event triggers, or on-demand. AWS Glue provides visual and code-based interfaces to make data integration more manageable. With AWS Glue Studio, users can visually create, run, and monitor ETL workflows with just a few clicks.
Why Consider AWS Glue for ETL Data Processing?
Automatic ETL Code Generation: By specifying the source and destination of data, AWS Glue can generate the code in Python or Scala for the entire ETL pipeline. This feature streamlines the data integration operations and allows users to parallelize heavy workloads.
Only Pay for the Resources You Use: Glue is cost-effective, and users only have to pay for the resources they use. If the ETL jobs need more computing power from time to time but consume fewer resources, users don’t have to pay for the peak time resources outside of this time.
Developer Endpoints: It is helpful for users who prefer to manually create and test their own custom ETL scripts. It can debug, edit and test autogenerated code. Using Developer Endpoints, custom readers, writers, or transformations can be created, which can further be imported as custom libraries into Glue ETL jobs.
Automatic Schema Discover: Glue uses crawlers that parse the data and its sources or targets. Crawlers obtain schema-related information and store it in the data catalog, which helps to manage jobs. Hence, users don’t need to design the schema for their data individually to cater to the complex features of ETL processes.
AWS Glue comprises many individual components, such as the Data Catalog, Job scheduling system, Crawlers, ETL Engine, Datastore, etc. Glue depends on the interaction between these components to develop and maintain ETL operations. The different components can be orchestrated through Glue workflows to get a functional data processing pipeline. Workflows define and visualize the order in which crawlers and jobs are supposed to be started to facilitate the data transformation.
The components of the Glue architecture are:
Data Catalog: It holds the structure of the data and stores metadata needed for the system to work efficiently. It contains information in metadata tables, where each table points to a single data store. Data catalog stores information related to data, queries, schemas, data sources and destinations, partitions, etc.
Job Scheduling System: It is responsible for starting jobs based on various events. The System deals with automating and chaining ETL pipelines by creating an execution schedule or event-based jobs triggering.
Crawlers: It retrieves data from the source and build metadata tables in the Data Catalog after determining the schema. Crawlers explore several data repositories in a single encounter and decide the ideal schema for those data.
ETL Engine: It handles ETL code generation in Python or Scala and allows code customization. Users can visually compose data transformation workflows and run them on Glue’s Apache Spark-based serverless ETL engine.
Data Store: It denotes a data repository that keeps users’ data for a long period. Some of the data stores include AWS S3 buckets and other relational databases.
How Does AWS Glue Work?
First, the user has to determine the data source, which is used as input to a process or transformation. Data crawlers analyze and extract necessary information about data sources and targets. It classifies data to determine the format and associated properties of the raw data and groups data into tables or partitions. This data is sent and stored as metadata table definitions to the Glue Data Catalog. After Glue Data Catalog is completely categorized, the data will be ETL-ready, searchable, and queryable. Users can create a script, schedule ETL jobs, or set the trigger events for the jobs to start. While executing the task, the script will extract data from the data source, transform and load it to the data target. Hence the ETL (Extract, Transform, Load) process will be completed.
Data Sources Supported by AWS Glue
Use Cases
Build Event-driven ETL Pipelines: AWS Glue is helpful while building event-driven ETL workflows. It allows developers to start AWS Glue workflows based on events delivered by Amazon EventBridge. This feature enables users to trigger a data integration workflow from any events from AWS services, SaaS providers, or custom applications. Users can start an ETL job by invoking AWS Glue ETL jobs through the AWS Lambda function whenever new data is available in Amazon S3.
Non-native JDBC Data Sources: AWS Glue has native connectors to data stores using JDBC drivers, and you can use this in AWS or anywhere else on the cloud as long as there is IP connectivity. Using the JDBC protocol, Glue natively supports data stores like Amazon RDS and its variants, Amazon Redshift, etc. For data sources that Glue doesn’t natively support, like SAP Sybase, IBM DB2, Pivotal Greenplum, or other RDBMS, users can import custom database connectors into AWS Glue jobs from AWS S3.
Data Transformation With Snowflake: AWS Glue has a fully managed environment that integrates easily with Snowflake’s data warehouse. With Snowflake and AWS Glue, users can benefit from optimized ETL processing that is easy to use and maintain. Together, these services manage data ingestion and transformation pipelines with more flexibility.
Querying With Athena: When using Athena with the AWS Glue Data Catalog, users can use AWS Glue to create databases and tables (schema) to be queried in Athena. Otherwise, Athena can be used for schema creation which can then be used in Glue and related services. AWS Glue jobs help to transform data to a format that optimizes query performance in Athena. It is possible to push data outside of AWS to the Amazon S3 bucket in a suboptimal format for querying in Athena. Users can configure AWS Glue ETL jobs and run them automatically based on triggers.
Conclusion
In this article, we have explored AWS Glue, a cost-effective service that provides easy-to-use tools to sort, validate, categorize, clean, and move data stored in warehouses and data lakes. It works with ETL pipelines and is compatible with other AWS services. Moreover, it provides centralized storage and operates with semi-structured data.
Key Takeaways:
AWS Glue is a serverless data integration service developed to extract, transform, and load data called ETL process.
By specifying the source and destination of data, Glue can generate the code in Python or Scala for the entire ETL pipeline.
AWS Glue architecture comprises Data Catalog, Job scheduling system, Crawlers, ETL Engine, Datastore, and so on.
A data catalog holds the structure of the data and stores metadata needed for the system to work efficiently.
Crawlers retrieve data from the source and build metadata tables in the Data Catalog after determining the schema.
AWS Glue has a fully managed environment that integrates easily with Snowflake’s data warehouse.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
I'm a cloud enthusiast and have done graduation in computer science. My skills include C, C++, Php, Python, Cloud services(AWS, GCP), shell scripting, MySQL, etc. I have hands-on experience and have done several projects and certifications in areas of Python, Php, MySQL, Cloud (GCP, AWS), and C++
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.