Apache Flume is a tool/service/data ingestion mechanism for gathering, aggregating, and delivering huge amounts of streaming data from diverse sources, such as log files, events, and so on, to centralized data storage. Flume is a tool that is very dependable, distributed, and customizable. einsteinerupload of.
In this article, we will discuss about Apache Flume, Flume Architecture, installation, setup, and Configuration. Basically, data from multiple sources can be transferred to centralized storage or processing systems like HDFS, HBase, and Spark using the Flume platform, a distributed, highly reliable, and scalable platform. Applications that process and analyze big data use Flume in the Apache Hadoop ecosystem.
Learning Objectives
The learning objectives in this article are
Understanding the architecture of flume.
Flume installation and configuration.
Sources of flume sink of the flume and channels of the flume.
Draw light on improving the performance of the flume.
The Flume architecture comprises three main components: sources, channels, and sinks.
Sources: Sources are the components in the Flume architecture that collect data from various sources, such as log files, network sockets, or system processes. Flume provides several built-in source types, including exec, spooling directory, and netcat. Custom sources can also be developed to support ingestion from various data sources. The data collected by the sources is typically unstructured and needs to be processed and transformed before it can be stored or analyzed.
Channels: Channels are the intermediate buffers that store and transport data between sources and sinks. Flume provides several built-in channel types: memory, JDBC, and file. Channels can be configured to have different properties, such as the maximum size of events or the maximum number of events stored. The data stored in channels can be compressed and encrypted, and it is configurable to be durable or not.
Sinks: Sinks are the final destinations that receive and process data from the channels, such as HDFS, HBase, Elasticsearch, or Kafka. Flume provides several built-in sink types, including HDFS, HBase, Solr, and Elasticsearch. Custom sinks can also be developed to support delivery to various data destinations.
Agents: Agents are the logical nodes in the Flume architecture. They are responsible for receiving data from sources, storing it in channels, and delivering it to sinks. An agent can have one or more sources, channels, and sinks. Flume agents can be configured to run on multiple nodes in a distributed manner to provide scalability and fault tolerance.
Event: Event is the basic unit of data in the Flume architecture. An event is a piece of unstructured data that is generated by a source and transported through channels to a sink. Events can have headers and bodies, which interceptors can modify and filter.
Interceptor: Interceptor is a component in the Flume architecture that can modify or filter events as they pass through the data flow. Interceptors can be used to enrich events with additional metadata or filter out unwanted events.
Apache Flume Installation and Configuration
Steps for installing and configuring Flume
1. Download Flume: Download the latest version of Flume from the Apache Flume website.
2. Install Java: Flume requires Java to be installed on the system. Make sure Java is installed and configured properly.
3. Set up environment variables: Set up environment variables for Java and Flume in the system. For example, add the following lines to the .bashrc or .bash_profile file:
4. Configure Flume: Flume is configured using configuration files written in the properties format. Create a configuration file called flume.conf in the $FLUME_HOME/conf directory. Here’s an example configuration for a simple Flume agent that reads data from a file and writes it to the console:
This configuration defines a source called “mysource” that reads data from a syslog file using the “exec” type source, a sink called “mysink” that logs data to the console using the “logger” type sink, and a memory channel called “mychannel” that stores events in memory. The source and sink are connected to the channel using the channels property.
5. Start Flume: Start Flume by running the following command in the terminal:
This command starts a Flume agent with the name “agent”, using the configuration file located in the $FLUME_HOME/conf directory.
6. Verify Flume is running: Verify that Flume is running by checking the log files in the $FLUME_HOME/logs directory.
Apache Flume Sources
Avro Source: This source receives data over the network via the Apache Avro protocol. It can be used to collect data from applications written in any programming language.
Netcat Source: This source listens on a network socket and receives data as plain text. It is useful for collecting data from sources that can send data as plain text over the network.
Syslog Source: This source receives data from Syslog servers. It is useful for collecting data from network devices, Unix servers, and other Syslog-enabled devices.
Spooling Directory Source: This source monitors a directory for new files and reads them as they are added to the directory. It is useful for collecting data from sources that write data to files.
HTTP Source: This source receives data over HTTP. It is useful for collecting data from web servers, REST APIs, and other HTTP-enabled sources.
JMS Source: This source receives data from a JMS (Java Messaging Service) queue. It is useful for collecting data from applications that send data to a JMS queue.
Apache Flume Sinks
HDFS Sink: This sink delivers the data to the Hadoop Distributed File System (HDFS). It is useful for storing data in Hadoop for further processing and analysis.
Kafka Sink: This sink delivers the data to the Apache Kafka messaging system. It is useful for processing data in real-time using Kafka.
ElasticSearch Sink: This sink delivers the data to the ElasticSearch search engine. It is useful for indexing and searching the data in real-time.
File Roll Sink: This sink delivers the data to files on the local file system. It is useful for storing data in a local file system for backup and archival purposes.
Hive Sink: This sink delivers the data to Apache Hive, a data warehousing and SQL-like query language for Hadoop. It is useful for processing and analyzing data using Hive.
JDBC Sink: This sink delivers the data to a relational database using JDBC. It is useful for storing data in a relational database for further processing and analysis.
Flume Channels
Flume channels can be of two types: memory-based channels and file-based channels.
Memory-based channels: Memory-based channels store events in memory, which makes them faster than file-based channels. They are useful when the volume of data being processed is small enough to fit into memory.
File-based channels: File-based channels store events on disk, which makes them slower than memory-based channels but allows them to handle large volumes of data that cannot fit into memory.
Flume channels have a configurable capacity, determining the maximum number of events that can be stored in the channel at any given time. If the channel becomes full, new events will be dropped until space becomes available. To avoid this, it is important to appropriately configure the channel capacity based on the data volume being processed.
Flume channels also support various transactional mechanisms to ensure that events are delivered to the sink in a reliable and consistent manner. For example, file-based channels use a write-ahead log (WAL) to ensure that events are not lost in case of a system failure.
Flume Performance Tuning
To achieve optimal performance, it is important to tune Flume based on the data collection and delivery task requirements.
Use the appropriate sources and sinks: Choose the appropriate sources and sinks based on the data collection and delivery task requirements. Using the right source and sink can significantly improve performance.
Use multiple channels: Flume channels buffer and store the events that are being processed by the sources and sinks. Using multiple channels can increase the parallelism of the Flume pipeline and improve performance.
Increase the channel capacity: By default, Flume channels have a small capacity. Increasing the channel capacity can improve the performance of the Flume pipeline by reducing the number of events that are dropped due to buffer overflow.
Use memory-based channels: Flume provides both disk-based and memory-based channels. Memory-based channels are faster than disk-based channels and are recommended for high-performance environments.
Use compression: Flume provides built-in support for compression. Enabling compression can reduce the size of the data being transferred and improve the performance of the Flume pipeline.
Tune the batch size: Flume processes events in batches. Tuning the batch size based on the data collection and delivery task requirements can improve performance.
Use load balancing: If multiple Flume agents are processing data, use load balancing to distribute the workload evenly across the agents. This can improve the overall performance of the Flume pipeline.
Application of Flume
Flume can be used to gather information from Internet of Things (IoT) devices, such as sensors or smart home devices, and store it in a centralized database.
Flume can be used to gather information from websites such as Twitter and Facebook and then store it in a centralized database for analysis.
These are some of the applications of Flume. This data is useful for the company’s future analysis and upcoming market strategies.
Advantages of Apache Flume
Many advantages of Apache Flume include scalable, reliability, and centralization; It has Large Data sets, It has Real-time data streaming, and many more.
Open-Source: Apache Flume is an open-source distributed system. So it is available free of cost.
Inexpensive: It is less costly to install and operate. Its maintenance is very economical.
Scalable: It is designed to handle massive amounts of data in a distributed manner. It can be set up to operate across several servers in a group, allowing it to handle data increases amounts without losing performance.
Data Ingestion: Data integrity is protected by built-in methods in Flume like error checking and data validation, which help ensure that data is not lost or changed during transmission.
Fault Tolerance: It has the ability to find the error. It contains techniques for moving information over many nodes in the cluster and for each unsuccessful operation and making sure that data is not lost due to any failure.
Reliable: These above features make Apache Flume a reliable tool for data.
Limited Scaling: Apache Flume scalability is frequently low because it can be difficult for any company to size the hardware of a standard Apache Flume, and it is typically a trial-and-error process. As a result, the scalability of Flume is frequently challenged.
Duplicacy: Apache Flume does not provide a guarantee that all the messages received will be completely unique. It is possible for duplicate messages to appear in certain situations.
Reliability Issues Sometimes: If the backing store is not chosen wisely, then there may be scalability and reliability issues.
These are some of the disadvantages of Flume
Conclusion
In conclusion, Flume is a good data ingestion and processing tool that can handle massive amounts of data from various sources and connect with Hadoop and other big data technologies without issues. Users may scale as required, adapt data flows, and set up data pipelines quickly. Flume’s robust data management features to ensure data security, availability, and availability, and its connection with other tools allows users to do advanced analyses and gain valuable info. Ultimately, Flume can help companies manage and get insights from their data to promote innovation and economic progress.
We can store the data in any of the centralized storage using Apache Flume (HBase, HDFS).
When the rate of incoming data exceeds the rate at which it can be written to the destination, Flume operates as a bridge between data producers and centralized stores, ensuring a continual flow of data.
Flume includes the capability of contextual routing.
Flume transactions are channel-based, with each communication requiring two transactions (one sender and one receiver). It ensures consistent message transmission.
Flume is a dependable, fault-tolerant, scalable, managed, and adaptable application.
The media shown in this article is not owned by Analytics Vidhya and is used at the Author’s discretion.
My self Bhutanadhu Hari, 2023 Graduated from Indian Institute of Technology Jodhpur ( IITJ ) . I am interested in Web Development and Machine Learning and most passionate about exploring Artificial Intelligence.
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.