Imagine diving into the details of data analysis, predictive modeling, and ML. Envision yourself unraveling the insights and patterns for making informed decisions that shape the future. The concept of Data Science was first used at the start of the 21st century, making it a relatively new area of research and technology. Before you decide to make your career in this field, check out the subjects in data science. In this article, we will be covering different data science subjects and what they can teach you.
Data Science involves gathering, analyzing, and interpreting different data or information to derive conclusions. It uses specialized expertise to understand various structured and raw data to obtain the necessary insights. It refers to various scientific operations, including algebra, calculus, charts, graphs, computer algorithms, computer code, etc.
Top 10 Data Science Subjects
Explore the top 10 subjects in data science along with some data science course details:
Introduction to Data Science
The fundamental concepts of data science deal with multiple dataset kinds and accepted methods for data exploration.
Mathematics and Statistics Fundamentals
The basic concepts of statistical analysis and mathematics cover linear algebra, mathematical calculus, and probabilities. It deals with fundamental ideas in probability and statistics to help students learn how to use them in data analysis applications.
Programming and Software Engineering
Major programming languages for data science include Python and R. An explanation of their syntax, fundamental instructions, and how they help in data analysis.
Data Wrangling and Preprocessing
Different procedures are involved in preprocessing the data, whether text or numerical. Deep learning algorithms built using neural networks perform well on larger data sets. Data preprocessing also includes handling missing or null values, dealing with anomalies, and converting variables.
Machine Learning Algorithms
Data science is incomplete without machine learning since it uses various statistical methods to create predictions and solutions according to the issue statement. The other parts of data science come together in machine learning, which can make the model more complicated by simultaneously utilizing all the other parts.
Deep Learning and Neural Networks
Deep learning is a subsection of Machine Learning. Neural networks support data processing, identifying patterns, and determining the results. Biological neural networks inspire neural networks. Unstructured text, image, and audio data are the most common data types for deep learning.
Data Visualization and Communication
With the help of various methods and platforms, you can achieve effective data visualization. You will learn more about integrating R packages, Tableau, and Power BI to visualize data.
Big Data and Distributed Computing
Learn about the methods and technologies used by Hadoop, Spark, and NoSQL databases to handle, organize, and analyze enormous amounts of data in real-time. You will become familiar with solutions for streaming analytics, cloud computing structures, and additional big data technologies.
Advanced Topics in Data Science
Data science courses will additionally cover more advanced topics such as big data and database management, engaging visualizations, multivariate statistical models, and deep learning.
Capstone Projects and Hands-on Experience
In the capstone project course, you can develop usable/public data products, which they may use to demonstrate their abilities to future businesses. These projects collaborate with businesses, government, or academia focusing on a real-world issue.
Here are some of the top data of data science colleges that you should know about:
IIT Data Science Program
IITs provide MTech and BTech data science and engineering degrees for students looking for careers in this industry in India.
The following are the required core courses for IIT Mandi’s BTech in Data Science and Engineering program:
Data Management and Visualization
Information Privacy and Security
Statistical Foundations of Data Science
Data Science Optimization for Statistical Foundations
Data Science Mathematical Foundations
Overview of Data Structures and Algorithms
Matrix Computations for Data Science
Computation for Data Science using Matrix Computations
An Introduction to Statistical Learning
The following are the mandatory courses included in IIT Guwahati’s MTech Data Science curriculum:
Foundations of Statistics for Data Science
Data Models and Algorithms
Dynamic Models
Techniques for Machine Learning in Scientific Computing
Computations with Matrices
Machine Learning Laboratory
Optimization Methods
Python Programming
BSc Data Science Program
The three-year undergraduate BSc Data Science curriculum introduces students to the fundamental ideas behind data algorithmic methods, frameworks, Python coding, statistics fundamentals, machine learning, and more. The BSc Data Science curriculum is as follows:
Statistical Inference and Probability
Data Warehousing
Multidimensional Modeling
Discrete Mathematics
Machine Learning
Operational Research
Optimization Strategies
Object-Oriented Programming in Java
Basics of Artificial Intelligence
Operating Systems
Machine Learning
Cloud Computing
Designing Programs and Data Structures in C
Elementary Statistics
Btech Data Science
A 4-year undergraduate program in BTech Data Science introduces students to the fundamental concepts of data science, including corporate analytics, machine learning, data visualization, and computer algorithms. The BTech Data Science curriculum is listed below:
Electrical and Electronic Engineering Principles
Fundamentals of Machine Learning and Artificial Intelligence
Design engineering with CAD
Engineering Level Physics
Engineering Level Chemistry
Python Based Application Programming
C-based Data Structures
Application of Statistics
Networks of Computers
Software Engineering and Assessment Techniques
Artificial Intelligence
Data Mining
MSc Data Science
The postgraduate Master of Science (M.Sc) course runs for two years and is divided into four semesters. The following is a breakdown of the M.Sc. in Data Science program per semester:
Analytical Statistics
Spatial sciences
Mathematics
Database Administration
Technologies for Computational Mathematics
Optimization Techniques
Deep Learning
Machine Learning
Artificial intelligence
BlackBelt Program by Analytics Vidhya
The BlackBelt Program, designed by the experts at Analytics Vidhya, covers all the basic and advanced data science concepts. The program covers the following features and syllabus for data science:
Natural Language Processing
ML and AI for Business Analysis
Basics of Deep Learning
SQL for Data Science
Microsoft Excel: Basics to Advanced
Industry-level Hands-on Projects
100+ hours of mentorship sessions
NLP using PyTorch
Data Science Tools
Data science involves a variety of tools that aid in data collection, analysis, visualization, and model building. Here is a list of essential data science tools:
Programming Languages:
Python: Widely used for data analysis, machine learning, and visualization with libraries like Pandas, NumPy, Scikit-learn, Matplotlib, and Seaborn.
R: Popular for statistical analysis, data visualization, and building statistical models.
Integrated Development Environments (IDEs):
Jupyter Notebook: Interactive environment for coding, data exploration, and visualization.
RStudio: IDE specifically designed for R programming.
Data Collection and Cleaning Tools:
Web Scraping Libraries (Beautiful Soup, Scrapy): For extracting data from websites.
OpenRefine: Tool for cleaning and transforming messy data.
Data Visualization Tools:
Matplotlib: Library for creating static, interactive, and animated visualizations in Python.
Seaborn: Built on Matplotlib, focused on statistical visualization.
Tableau: User-friendly tool for creating interactive and shareable visualizations.
Machine Learning Libraries:
Scikit-learn: Machine learning library for classification, regression, clustering, and more.
TensorFlow: Open-source deep learning framework developed by Google.
PyTorch: Deep learning framework with dynamic computation graphs.
Big Data and Distributed Computing:
Hadoop: Framework for distributed storage and processing of large datasets.
Apache Spark: Fast and general-purpose cluster computing system for big data.
Databases and Data Storage:
SQL (Structured Query Language): For managing and querying relational databases.
NoSQL Databases (MongoDB, Cassandra): For handling unstructured and semi-structured data.
Cloud Platforms:
Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure: Cloud services for scalable data storage and processing.
Text Analytics Tools:
NLTK (Natural Language Toolkit): Python library for working with human language data.
spaCy: Library for natural language processing tasks.
Collaboration and Communication Tools:
Slack, Microsoft Teams: Communication and collaboration platforms for team projects.
GitHub: Platform for hosting and collaborating on code repositories.
Data Science Projects
Here are some beginner-friendly data science project ideas to help you get started:
Exploratory Data Analysis (EDA): Analyze a dataset to gain insights and visualize trends using Python libraries like Pandas, Matplotlib, and Seaborn.
Predictive Modeling: Build a simple linear regression model to predict a numerical outcome based on features from a dataset.
Classification Problem: Use a dataset to classify objects into different categories using algorithms like logistic regression or decision trees.
Sentiment Analysis: Analyze text data to determine the sentiment (positive, negative, neutral) using Natural Language Processing (NLP) tools like NLTK or spaCy.
Titanic Survival Prediction: Predict whether a passenger on the Titanic survived or not using the classic Titanic dataset.
Iris Flower Classification: Classify iris flowers into different species based on features like petal length and width using machine learning algorithms.
Movie Recommender System: Create a basic movie recommender system using collaborative filtering techniques.
Housing Price Prediction: Predict housing prices based on features like location, square footage, and number of bedrooms using regression techniques.
Customer Segmentation: Cluster customers into different segments based on their purchasing behavior using clustering algorithms like K-Means.
Time Series Analysis: Analyze and forecast stock prices or weather data using time series analysis techniques.
Image Classification: Build a simple image classification model to identify common objects using deep learning frameworks like TensorFlow or PyTorch.
Anomaly Detection: Identify anomalies or outliers in a dataset using statistical methods or machine learning algorithms.
Social Media Sentiment Analysis: Analyze sentiment on social media platforms for a specific topic using APIs and NLP techniques.
Customer Churn Prediction: Predict whether customers are likely to churn (leave) a service or product based on historical data.
There are many opportunities in the vast field of data science for those interested in learning more about it. Additionally, you must comprehend certain additional concepts if you want to work as a data professional, such as the following:
Data warehousing and data engineering: Data engineering converts data into a usable format for analysis. This usually involves controlling the data’s origin, framework, value, maintenance, and accessibility to ensure other scientists can discover and evaluate it.
Data mining and statistical analysis: Data mining is using statistics to identify developments and patterns in data from existing sources of information through statistical data analysis and predictive algorithms.
Database architecture and management: This aspect is at the forefront of developing, installing, and managing databases that enable large volume, complicated data activities for particular services or sets of services.
Data visualization: The graphical representation of data is data visualization. It makes it possible to employ visualization tools, including charts, tables, graphs, images, maps, and tables. These tools make analyzing trends, competitors and variations, growth, data patterns, and instances much easier.
Operational data analytics: Operational-related data analytics makes immediate use of tools and data given by different staff and stakeholders of the company. Businesses may simplify their processes and improve the real-time functionality of their positions with this process.
Marketing data analytics: Marketing data analytics incorporates tools and tactics such as sponsored search marketing, marketing software solutions, search engine optimization, and more for analysis. Data from marketing and sales activities, customer feedback, e-commerce and logistics operation tracking, new business opportunity discovery, and consumer data are the data sources.
Conclusion
These were the top data science subjects and books you must read to ace your career. If you want to know more about recent developments in Data, ML, and AI, follow our blogs and find the best quality content. We also offer a range of data science courses to help learners gain the latest skills and master the best data practices. Explore our courses now!
Frequently Asked Questions
Q1. What is the eligibility to start or pursue a career in Data Science?
A. A bachelor’s or master’s degree in mathematics, computer science, or engineering is necessary, along with proficiency in statistics and algorithms, if one wants to pursue or begin a career in data science. A background in a relevant discipline and knowledge of the fundamental ideas covered by the field is essential.
Q2. Does Data Science require coding?
A. A prospective student should be familiar with computer programming languages like C++, Java, and Python because subjects in data science rely greatly on coding. You can locate, study, and effectively organize unstructured data with an understanding of coding and computer languages.
Q3. Is Data Science difficult?
A. Understanding data science will be relatively easy, and it involves thoroughly comprehending data methods and principles. There are several resources available that can make it simpler to learn these skills.
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
Powered By
Cookies
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
brahmaid
It is needed for personalizing the website.
csrftoken
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Identityid
Preserves the login/logout state of users across the whole site.
sessionid
Preserves users' states across page requests.
g_state
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
MUID
Used by Microsoft Clarity, to store and track visits across websites.
_clck
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
_clsk
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
SRM_I
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
SM
Use to measure the use of the website for internal analytics
CLID
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
SRM_B
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
_gid
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
_ga_#
Used by Google Analytics, to store and count pageviews.
_gat_#
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
collect
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
AEC
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
G_ENABLED_IDPS
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
test_cookie
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
_we_us
this is used to send push notification using webengage.
WebKlipperAuth
used by webenage to track auth of webenagage.
ln_or
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
JSESSIONID
Use to maintain an anonymous user session by the server.
li_rm
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
AnalyticsSyncHistory
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
lms_analytics
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
liap
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
visit
allow for the Linkedin follow feature.
li_at
often used to identify you, including your name, interests, and previous activity.
s_plt
Tracks the time that the previous page took to load
lang
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
s_tp
Tracks percent of page viewed
AMCV_14215E3D5995C57C0A495C55%40AdobeOrg
Indicates the start of a session for Adobe Experience Cloud
s_pltp
Provides page name value (URL) for use by Adobe Analytics
s_tslv
Used to retain and fetch time since last visit in Adobe Analytics
li_theme
Remembers a user's display preference/theme setting
li_theme_set
Remembers which users have updated their display / theme preferences
We do not use cookies of this type.
_gcl_au
Used by Google Adsense, to store and track conversions.
SID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SAPISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
__Secure-#
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
APISID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
SSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
HSID
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
DV
These cookies are used for the purpose of targeted advertising.
NID
These cookies are used for the purpose of targeted advertising.
1P_JAR
These cookies are used to gather website statistics, and track conversion rates.
OTZ
Aggregate analysis of website visitors
_fbp
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr
Contains a unique browser and user ID, used for targeted advertising.
bscookie
Used by LinkedIn to track the use of embedded services.
lidc
Used by LinkedIn for tracking the use of embedded services.
bcookie
Used by LinkedIn to track the use of embedded services.
aam_uuid
Use these cookies to assign a unique ID when users visit a website.
UserMatchHistory
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
li_sugr
Used to make a probabilistic match of a user's identity outside the Designated Countries
MR
Used to collect information for analytics purposes.
ANONCHK
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
We do not use cookies of this type.
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.