Hypertension, a silent killer affecting millions of Americans, could see a major breakthrough in treatment thanks to an innovative artificial intelligence (AI) program. With hypertension being a leading cause of death, stroke, and chronic heart failure, finding the most effective medication for each patient has been challenging. However, a new data-driven machine learning model developed by Boston University scientists and physicians aims to provide real-time treatment recommendations based on patient-specific characteristics. This AI program offers personalized solutions, enhances transparency, and builds trust in AI-generated results. Let’s delve into the details of this remarkable development and its potential impact on hypertension treatment.
Also Read: Groundbreaking News: FDA Grants Approval to Elon Musk’s Neuralink for Human Trials
Conventional methods of treating hypertension often involve a trial-and-error approach with various medications, each with its own pros and cons. However, the new AI program developed by Boston University offers a revolutionary approach to personalized treatment. By analyzing patient-specific data, including demographics, vital signs, medical history, and clinical test records, the program generates tailored hypertension prescriptions for individual patients.
Also Read: AI Takes the Lead in Prenatal Care: Predicting Fetal Heart Rate with Precision
Published in BMC Medical Informatics and Decision Making, the study describes how the AI program outperforms the current standard of care in reducing systolic blood pressure. Leveraging machine learning algorithms, the program provides physicians with a list of suggested medications & the probability of success for each. The goal is to maximize the effectiveness of hypertensive medications at the individual level, enabling a personalized approach to treatment.
One of the critical aspects of this AI program is its emphasis on transparency. The research team aimed to ensure clinicians, including those without technical expertise, could understand and trust the algorithm’s recommendations. The program clearly explains how the model works and why specific therapeutic recommendations are proposed. By doing so, it aims to overcome the low levels of trust typically associated with AI in healthcare.
Also Read: Breaking Down Social Bias in Artificial Intelligence Algorithms for Cardiovascular Risk Assessment
To develop the model, the researchers utilized deidentified data from over 42,000 hypertensive patients at Boston Medical Center. The model sorted patients into affinity groups based on similar characteristics and compared its effectiveness to the current standard of care and other predictive algorithms. The results showed the AI program achieved a 70.3% larger reduction in systolic blood pressure than the standard of care. This means that it outperformed alternative models by 7.08%.
Also Read: Breaking Barriers: ChatGPT’s Radiology Exam Triumph and Limitations Unveiled!
Beyond its success in personalized treatment recommendations, the AI program also demonstrated the benefits of deprescribing—reducing or stopping prescriptions for certain patients taking multiple medications. The program’s ability to suggest optimal therapies offers valuable insights in situations where the medical community debates the effectiveness of different drugs, known as clinical equipoise.
While the adoption of machine learning in healthcare has been limited, the potential impact is widely recognized. The transparency and accuracy of this AI program address key concerns, such as interpreting results and trust in artificial intelligence. By effectively handling large amounts of patient data, uncovering patterns, and providing personalized recommendations, this AI program has the potential to revolutionize hypertension treatment and improve patient outcomes.
Also Read: AI Discovers Antibiotic to Combat Deadly Bacteria
Boston University’s new AI program for hypertension treatment represents a significant breakthrough in healthcare. Physicians can receive real-time personalized hypertension prescription recommendations by leveraging patient-specific data and advanced machine learning algorithms. This innovative approach outperforms the current standard of care and also builds trust in AI-generated results by ensuring transparency & understanding. As this AI program continues to evolve, it holds the promise of transforming treatment strategies for hypertension and improving the lives of millions of patients worldwide.
Sabreena Basheer is an architect-turned-writer who's passionate about documenting anything that interests her. She's currently exploring the world of AI and Data Science as a Content Manager at Analytics Vidhya.
How AI is Revolutionizing the Healthcare Sector?
Breaking Down Social Bias in Artificial Intelli...
Deep Learning Used to Discover Antibiotics to C...
Data Science In Healthcare
AI Excels at Detecting Mental Illness
How is Big Data Helping in the Development of H...
Top 7 AI Healthcare Solution Providers
How Does AI Medical Diagnosis Work?
AI-Designed Drug Ready for Human Trials
Decoding the Blueprint of Life: AI’s Gene...
We use cookies essential for this site to function well. Please click to help us improve its usefulness with additional cookies. Learn about our use of cookies in our Privacy Policy & Cookies Policy.
Show details
This site uses cookies to ensure that you get the best experience possible. To learn more about how we use cookies, please refer to our Privacy Policy & Cookies Policy.
It is needed for personalizing the website.
Expiry: Session
Type: HTTP
This cookie is used to prevent Cross-site request forgery (often abbreviated as CSRF) attacks of the website
Expiry: Session
Type: HTTPS
Preserves the login/logout state of users across the whole site.
Expiry: Session
Type: HTTPS
Preserves users' states across page requests.
Expiry: Session
Type: HTTPS
Google One-Tap login adds this g_state cookie to set the user status on how they interact with the One-Tap modal.
Expiry: 365 days
Type: HTTP
Used by Microsoft Clarity, to store and track visits across websites.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Persists the Clarity User ID and preferences, unique to that site, on the browser. This ensures that behavior in subsequent visits to the same site will be attributed to the same user ID.
Expiry: 1 Year
Type: HTTP
Used by Microsoft Clarity, Connects multiple page views by a user into a single Clarity session recording.
Expiry: 1 Day
Type: HTTP
Collects user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Years
Type: HTTP
Use to measure the use of the website for internal analytics
Expiry: 1 Years
Type: HTTP
The cookie is set by embedded Microsoft Clarity scripts. The purpose of this cookie is for heatmap and session recording.
Expiry: 1 Year
Type: HTTP
Collected user data is specifically adapted to the user or device. The user can also be followed outside of the loaded website, creating a picture of the visitor's behavior.
Expiry: 2 Months
Type: HTTP
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected includes the number of visitors, the source where they have come from, and the pages visited in an anonymous form.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics, to store and count pageviews.
Expiry: 399 Days
Type: HTTP
Used by Google Analytics to collect data on the number of times a user has visited the website as well as dates for the first and most recent visit.
Expiry: 1 Day
Type: HTTP
Used to send data to Google Analytics about the visitor's device and behavior. Tracks the visitor across devices and marketing channels.
Expiry: Session
Type: PIXEL
cookies ensure that requests within a browsing session are made by the user, and not by other sites.
Expiry: 6 Months
Type: HTTP
use the cookie when customers want to make a referral from their gmail contacts; it helps auth the gmail account.
Expiry: 2 Years
Type: HTTP
This cookie is set by DoubleClick (which is owned by Google) to determine if the website visitor's browser supports cookies.
Expiry: 1 Year
Type: HTTP
this is used to send push notification using webengage.
Expiry: 1 Year
Type: HTTP
used by webenage to track auth of webenagage.
Expiry: Session
Type: HTTP
Linkedin sets this cookie to registers statistical data on users' behavior on the website for internal analytics.
Expiry: 1 Day
Type: HTTP
Use to maintain an anonymous user session by the server.
Expiry: 1 Year
Type: HTTP
Used as part of the LinkedIn Remember Me feature and is set when a user clicks Remember Me on the device to make it easier for him or her to sign in to that device.
Expiry: 1 Year
Type: HTTP
Used to store information about the time a sync with the lms_analytics cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Used to store information about the time a sync with the AnalyticsSyncHistory cookie took place for users in the Designated Countries.
Expiry: 6 Months
Type: HTTP
Cookie used for Sign-in with Linkedin and/or to allow for the Linkedin follow feature.
Expiry: 6 Months
Type: HTTP
allow for the Linkedin follow feature.
Expiry: 1 Year
Type: HTTP
often used to identify you, including your name, interests, and previous activity.
Expiry: 2 Months
Type: HTTP
Tracks the time that the previous page took to load
Expiry: Session
Type: HTTP
Used to remember a user's language setting to ensure LinkedIn.com displays in the language selected by the user in their settings
Expiry: Session
Type: HTTP
Tracks percent of page viewed
Expiry: Session
Type: HTTP
Indicates the start of a session for Adobe Experience Cloud
Expiry: Session
Type: HTTP
Provides page name value (URL) for use by Adobe Analytics
Expiry: Session
Type: HTTP
Used to retain and fetch time since last visit in Adobe Analytics
Expiry: 6 Months
Type: HTTP
Remembers a user's display preference/theme setting
Expiry: 6 Months
Type: HTTP
Remembers which users have updated their display / theme preferences
Expiry: 6 Months
Type: HTTP
Used by Google Adsense, to store and track conversions.
Expiry: 3 Months
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
Save certain preferences, for example the number of search results per page or activation of the SafeSearch Filter. Adjusts the ads that appear in Google Search.
Expiry: 2 Years
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 6 Hours
Type: HTTP
These cookies are used for the purpose of targeted advertising.
Expiry: 1 Month
Type: HTTP
These cookies are used to gather website statistics, and track conversion rates.
Expiry: 1 Month
Type: HTTP
Aggregate analysis of website visitors
Expiry: 6 Months
Type: HTTP
This cookie is set by Facebook to deliver advertisements when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
Expiry: 4 Months
Type: HTTP
Contains a unique browser and user ID, used for targeted advertising.
Expiry: 2 Months
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 1 Year
Type: HTTP
Used by LinkedIn for tracking the use of embedded services.
Expiry: 1 Day
Type: HTTP
Used by LinkedIn to track the use of embedded services.
Expiry: 6 Months
Type: HTTP
Use these cookies to assign a unique ID when users visit a website.
Expiry: 6 Months
Type: HTTP
These cookies are set by LinkedIn for advertising purposes, including: tracking visitors so that more relevant ads can be presented, allowing users to use the 'Apply with LinkedIn' or the 'Sign-in with LinkedIn' functions, collecting information about how visitors use the site, etc.
Expiry: 6 Months
Type: HTTP
Used to make a probabilistic match of a user's identity outside the Designated Countries
Expiry: 90 Days
Type: HTTP
Used to collect information for analytics purposes.
Expiry: 1 year
Type: HTTP
Used to store session ID for a users session to ensure that clicks from adverts on the Bing search engine are verified for reporting purposes and for personalisation
Expiry: 1 Day
Type: HTTP
Cookie declaration last updated on 24/03/2023 by Analytics Vidhya.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies, we need your permission. This site uses different types of cookies. Some cookies are placed by third-party services that appear on our pages. Learn more about who we are, how you can contact us, and how we process personal data in our Privacy Policy.
Edit
Resend OTP
Resend OTP in 45s