Claude 3.7 Sonnet and Qwen 2.5 Coder 32B Instruct are leading AI models for programming and code generation. Qwen 2.5 stands out for its efficiency and clear coding style, while Claude 3.7 Sonnet shines in contextual understanding and adaptability. In this article, I will compare their generated code, focusing on syntax quality, structural coherence, and overall performance. This detailed analysis of their coding strengths will help you choose the best model for your programming needs.
This section compares the latest coding language models from QwenLM and Anthropic AI.
Specification | Qwen 2.5 Coder 32B | Claude 3.7 Sonnet |
---|---|---|
Input Context Window | Up to 128K tokens | Up to 200K tokens |
Maximum Output Tokens | 8K tokens | 128K tokens |
Number of Parameters | 32 billion | Not specified |
Release Date | November 12, 2024 | February 20, 2025 |
Output Tokens per Second | 50 tokens/sec | 100 tokens/sec |
Below are the results on different benchmarks:
Also Read: Is Qwen2.5-Max Better than DeepSeek-R1 and Kimi k1.5?
Also Read: Claude 3.7 Sonnet vs Grok 3: Which LLM is Better at Coding?
In this section, I will test the coding capabilities of both models using diverse prompts and identify which one excels at each task.
Prompt: “Create a single HTML file that sets up a basic Three.js scene with a rotating 3D globe. The globe should have high detail (64 segments), use a placeholder texture for the Earth’s surface, and include ambient and directional lighting for realistic shading. Implement smooth rotation animation around the Y-axis, handle window resizing to maintain proper proportions, and use antialiasing for smoother edges. Explanation: Scene Setup : Initializes the scene, camera, and renderer with antialiasing. Sphere Geometry : Creates a high-detail sphere geometry (64 segments). Texture : Loads a placeholder texture using THREE.TextureLoader. Material & Mesh : Applies the texture to the sphere material and creates a mesh for the globe. Lighting : Adds ambient and directional lights to enhance the scene’s realism. Animation : Continuously rotates the globe around its Y-axis. Resize Handling : Adjusts the renderer size and camera aspect ratio when the window is resized.“
Output:
Qwen 2.5 Coder
Claude 3.7 Sonnet
Qwen 2.5 Coder provides a more reliable baseline with functional texture loading, while Claude 3.7 Sonnet prioritizes user experience and scalability but falters with implementation details like the texture path and bump map.
Verdict
Claude 3.7 Sonnet ❌ | Qwen 2.5 Coder ✅
Prompt: “Write a Python program that visualizes the sorting process of an array using Matplotlib. Implement the Merge Sort algorithm and display the array as a bar chart after each merge operation. The bars should dynamically update to show progress.”
Output:
Qwen 2.5 Coder
Claude 3.7 Sonnet
Verdict
Claude 3.7 Sonnet ✅ | Qwen 2.5 Coder ❌
Prompt: “Design and implement an efficient algorithm to solve the “Maximum Subarray Sum” problem, commonly known as Kadane’s Algorithm. Given an array of integers, your task is to find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.”
Qwen 2.5 Coder 32B
def max_subarray_sum(arr):
if not arr:
raise ValueError("Array must contain at least one number")
# Initialize variables
maxSoFar = arr[0]
maxEndingHere = arr[0]
# Iterate through the array starting from the second element
for i in range(1, len(arr)):
# Update maxEndingHere
maxEndingHere = max(arr[i], maxEndingHere + arr[i])
# Update maxSoFar if needed
maxSoFar = max(maxSoFar, maxEndingHere)
return maxSoFar
# Example usage
arr = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print("Maximum subarray sum is:", max_subarray_sum(arr))
Output:
Maximum subarray sum is: 6
Claude 3.7 Sonnet
function maxSubArray(nums) {
// Handle edge case of empty array
if (nums.length === 0) return 0;
let maxSum = nums[0]; // Best solution found so far
let currentSum = nums[0]; // Best solution ending at current position
for (let i = 1; i < nums.length; i++) {
currentSum = Math.max(nums[i], currentSum + nums[i]);
maxSum = Math.max(maxSum, currentSum);
}
return maxSum;
}
// Example usage
function testKadane() {
const testCases = [
{ input: [-2, 1, -3, 4, -1, 2, 1, -5, 4], expected: 6 }, // Subarray [4, -1, 2, 1]
{ input: [1], expected: 1 }, // Single element
{ input: [-1], expected: -1 }, // Single negative element
{ input: [-2, -3, -1, -5], expected: -1 }, // All negative elements
{ input: [5, 4, -1, 7, 8], expected: 23 } // Subarray [5, 4, -1, 7, 8] (entire array)
];
for (const test of testCases) {
const result = maxSubArray(test.input);
console.log(`Input: [${test.input}]`);
console.log(`Expected: ${test.expected}, Result: ${result}`);
console.log(`Test ${result === test.expected ? 'PASSED' : 'FAILED'}`);
console.log('---');
}
}
testKadane();
Output:
Input: [-2,1,-3,4,-1,2,1,-5,4]
Expected: 6, Result: 6
Test PASSED
---
Input: [1]
Expected: 1, Result: 1
Test PASSED
---
Input: [-1]
Expected: -1, Result: -1
Test PASSED
---
Input: [-2,-3,-1,-5]
Expected: -1, Result: -1
Test PASSED
---
Input: [5,4,-1,7,8]
Expected: 23, Result: 23
Test PASSED
---
Qwen 2.5 Coder 32B
Claude 3.7 Sonnet
Verdict:
Claude 3.7 Sonnet ✅ | Qwen 2.5 Coder ❌
Prompt: “Use an SQLite database to generate and solve a simple 5×5 ASCII maze.
The maze should be stored in a table Maze(x, y, type) where type is ‘wall’ or ‘path’.
Implement a SQL query to find the shortest path from (0,0) to (4,4) using recursive Common Table Expressions (CTEs).”
import sqlite3
# Connect to SQLite database (or create it if it doesn't exist)
conn = sqlite3.connect('maze.db')
cursor = conn.cursor()
# Create the Maze table
cursor.execute('''
CREATE TABLE IF NOT EXISTS Maze (
x INTEGER,
y INTEGER,
type TEXT,
PRIMARY KEY (x, y)
)
''')
# Insert the sample maze into the table
maze_data = [
(0, 0, 'path'), (0, 1, 'path'), (0, 2, 'path'), (0, 3, 'path'), (0, 4, 'path'),
(1, 0, 'path'), (1, 1, 'path'), (1, 2, 'path'), (1, 3, 'wall'), (1, 4, 'path'),
(2, 0, 'path'), (2, 1, 'wall'), (2, 2, 'path'), (2, 3, 'wall'), (2, 4, 'path'),
(3, 0, 'path'), (3, 1, 'path'), (3, 2, 'path'), (3, 3, 'wall'), (3, 4, 'path'),
(4, 0, 'path'), (4, 1, 'path'), (4, 2, 'path'), (4, 3, 'path'), (4, 4, 'path'),
(1, 2, 'path'), (2, 2, 'path'), (3, 2, 'path') # Ensure paths are correctly set
]
# Insert the maze data
cursor.executemany('INSERT INTO Maze (x, y, type) VALUES (?, ?, ?)', maze_data)
conn.commit()
# Define the recursive CTE query to find the shortest path
query = '''
WITH RECURSIVE Path AS (
-- Anchor member: Start at (0, 0)
SELECT x, y, type, CAST(CAST(x AS TEXT) || ',' || CAST(y AS TEXT) AS TEXT) AS path, 0 AS cost
FROM Maze
WHERE x = 0 AND y = 0
UNION ALL
-- Recursive member: Explore neighbors
SELECT m.x, m.y, m.type, p.path || ',' || CAST(m.x AS TEXT) || ',' || CAST(m.y AS TEXT) AS path, p.cost + 1 AS cost
FROM Maze m
JOIN Path p ON (m.x = p.x + 1 AND m.y = p.y) OR
(m.x = p.x - 1 AND m.y = p.y) OR
(m.x = p.x AND m.y = p.y + 1) OR
(m.x = p.x AND m.y = p.y - 1)
WHERE m.type = 'path' AND
m.x BETWEEN 0 AND 4 AND
m.y BETWEEN 0 AND 4 AND
CAST(m.x AS TEXT) || ',' || CAST(m.y AS TEXT) NOT IN (SELECT SUBSTR(path, -4) FROM Path)
)
-- Select the shortest path to (4, 4)
SELECT path, cost
FROM Path
WHERE x = 4 AND y = 4
ORDER BY cost ASC
LIMIT 1
'''
# Execute the query
cursor.execute(query)
result = cursor.fetchone()
if result:
path, cost = result
print(f"Shortest path: {path}")
print(f"Cost: {cost}")
else:
print("No path found")
# Close the connection
conn.close()
Output:
---------------------------------------------------------------------------
IntegrityError Traceback (most recent call last)
<ipython-input-7-69b873cc8b5b> in <cell line: 28>()
26
27 # Insert the maze data
---> 28 cursor.executemany('INSERT INTO Maze (x, y, type) VALUES (?, ?, ?)', maze_data)
29 conn.commit()
30
IntegrityError: UNIQUE constraint failed: Maze.x, Maze.y
Claude 3.7 Sonnet
import sqlite3
import random
def create_database():
"""Create and initialize the SQLite database for the maze."""
conn = sqlite3.connect(':memory:') # Using in-memory database for simplicity
cursor = conn.cursor()
# Create the maze table
cursor.execute('''
CREATE TABLE Maze (
x INTEGER,
y INTEGER,
type TEXT,
PRIMARY KEY (x, y)
)
''')
# Generate a random maze
generate_maze(cursor)
return conn, cursor
def generate_maze(cursor):
"""Generate a random 5x5 maze and store it in the database."""
# First, fill everything with walls
for x in range(5):
for y in range(5):
cursor.execute('INSERT INTO Maze VALUES (?, ?, ?)', (x, y, 'wall'))
# Create a simple maze with a guaranteed path from start to end
# Using a simplified version of randomized DFS for maze generation
visited = set()
stack = [(0, 0)]
visited.add((0, 0))
# Set start and end as paths
cursor.execute('UPDATE Maze SET type = ? WHERE x = ? AND y = ?', ('path', 0, 0))
cursor.execute('UPDATE Maze SET type = ? WHERE x = ? AND y = ?', ('path', 4, 4))
while stack:
x, y = stack[-1]
# Get unvisited neighbors
neighbors = []
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
for dx, dy in directions:
nx, ny = x + dx, y + dy
if 0 <= nx < 5 and 0 <= ny < 5 and (nx, ny) not in visited:
neighbors.append((nx, ny))
if neighbors:
# Choose a random unvisited neighbor
nx, ny = random.choice(neighbors)
visited.add((nx, ny))
stack.append((nx, ny))
# Mark as path
cursor.execute('UPDATE Maze SET type = ? WHERE x = ? AND y = ?', ('path', nx, ny))
else:
# Backtrack
stack.pop()
# Make sure there's a valid path from start to end
# This is a simplified approach and might create a very direct path
make_valid_path(cursor)
def make_valid_path(cursor):
"""Ensure there's a valid path from (0,0) to (4,4)."""
# Simple approach: create a direct path if needed
for i in range(5):
cursor.execute('UPDATE Maze SET type = ? WHERE x = ? AND y = ?', ('path', i, i))
def print_maze(cursor):
"""Print the maze in ASCII format."""
cursor.execute('SELECT x, y, type FROM Maze ORDER BY y, x')
rows = cursor.fetchall()
maze_grid = [['#' for _ in range(5)] for _ in range(5)]
for x, y, cell_type in rows:
maze_grid[y][x] = '#' if cell_type == 'wall' else ' '
print("Maze:")
for row in maze_grid:
print(''.join(row))
def print_solution_path(cursor, path):
"""Print the maze with the solution path marked."""
cursor.execute('SELECT x, y, type FROM Maze ORDER BY y, x')
rows = cursor.fetchall()
# Create maze grid
maze_grid = [['#' for _ in range(5)] for _ in range(5)]
for x, y, cell_type in rows:
maze_grid[y][x] = '#' if cell_type == 'wall' else ' '
# Mark path
for x, y in path:
maze_grid[y][x] = 'X'
# Mark start and end
maze_grid[0][0] = 'S'
maze_grid[4][4] = 'E'
print("\nSolution Path:")
for row in maze_grid:
print(''.join(row))
def solve_maze_with_sql(cursor):
"""Solve the maze using recursive Common Table Expressions (CTE) in SQL."""
query = '''
WITH RECURSIVE
-- Define starting point
PathFinder(x, y, path, visited) AS (
SELECT 0, 0, '(0,0)', '(0,0)'
UNION ALL
-- Recursive part: explore in four directions
SELECT
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.x + 1
WHEN m.type = 'path' AND direction = 1 THEN p.x
WHEN m.type = 'path' AND direction = 2 THEN p.x - 1
WHEN m.type = 'path' AND direction = 3 THEN p.x
ELSE p.x
END,
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.y
WHEN m.type = 'path' AND direction = 1 THEN p.y + 1
WHEN m.type = 'path' AND direction = 2 THEN p.y
WHEN m.type = 'path' AND direction = 3 THEN p.y - 1
ELSE p.y
END,
p.path || '->' || '(' ||
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.x + 1
WHEN m.type = 'path' AND direction = 1 THEN p.x
WHEN m.type = 'path' AND direction = 2 THEN p.x - 1
WHEN m.type = 'path' AND direction = 3 THEN p.x
ELSE p.x
END || ',' ||
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.y
WHEN m.type = 'path' AND direction = 1 THEN p.y + 1
WHEN m.type = 'path' AND direction = 2 THEN p.y
WHEN m.type = 'path' AND direction = 3 THEN p.y - 1
ELSE p.y
END || ')',
p.visited || ',' || '(' ||
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.x + 1
WHEN m.type = 'path' AND direction = 1 THEN p.x
WHEN m.type = 'path' AND direction = 2 THEN p.x - 1
WHEN m.type = 'path' AND direction = 3 THEN p.x
ELSE p.x
END || ',' ||
CASE
WHEN m.type = 'path' AND direction = 0 THEN p.y
WHEN m.type = 'path' AND direction = 1 THEN p.y + 1
WHEN m.type = 'path' AND direction = 2 THEN p.y
WHEN m.type = 'path' AND direction = 3 THEN p.y - 1
ELSE p.y
END || ')'
FROM
PathFinder p,
(SELECT 0 AS direction UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3) AS dirs,
Maze m
WHERE
-- Check direction:
-- 0: right, 1: down, 2: left, 3: up
(
(dirs.direction = 0 AND m.x = p.x + 1 AND m.y = p.y) OR
(dirs.direction = 1 AND m.x = p.x AND m.y = p.y + 1) OR
(dirs.direction = 2 AND m.x = p.x - 1 AND m.y = p.y) OR
(dirs.direction = 3 AND m.x = p.x AND m.y = p.y - 1)
)
-- Check if the new position is a valid path and hasn't been visited
AND m.type = 'path'
AND p.visited NOT LIKE '%(' || m.x || ',' || m.y || ')%'
)
-- Select the shortest path to the destination
SELECT path
FROM PathFinder
WHERE x = 4 AND y = 4
ORDER BY length(path)
LIMIT 1;
'''
cursor.execute(query)
result = cursor.fetchone()
if result is None:
print("No solution found!")
return None
# Parse the path string into coordinates
path_str = result[0]
coord_strs = path_str.split('->')
path = []
for coord_str in coord_strs:
# Extract x and y from strings like "(0,0)"
coord = coord_str.strip('()').split(',')
path.append((int(coord[0]), int(coord[1])))
return path
def main():
conn, cursor = create_database()
# Print the generated maze
print_maze(cursor)
# Solve the maze
print("\nSolving maze with SQL recursive CTE...")
path = solve_maze_with_sql(cursor)
if path:
print(f"Solution found! Path length: {len(path)}")
print(f"Path: {path}")
# Visualize the solution
print_solution_path(cursor, path)
conn.close()
if __name__ == "__main__":
main()
Output:
Maze:
Solving maze with SQL recursive CTE...
Solution found! Path length: 9
Path: [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (4, 2), (4, 3),
(4, 4)]
Solution Path:
SXXXX
X
X
X
E
Qwen 2.5 Coder 32B
Claude 3.7 Sonnet
Verdict:
Claude 3.7 Sonnet ✅ | Qwen 2.5 Coder ❌
Task | Winner |
---|---|
Task 1: HTML Code (Three.js Globe) | Qwen 2.5 Coder |
Task 2: Data Visualization (Merge Sort) | Claude 3.7 Sonnet |
Task 3: Max Subarray (Kadane’s Algorithm) | Claude 3.7 Sonnet |
Task 4: Maze Solver (SQLite Maze) | Claude 3.7 Sonnet |
Both Qwen 2.5 Coder 32B and Claude 3.7 Sonnet present unique strengths in the coding landscape. Claude 3.7 Sonnet demonstrates superior performance in various benchmarks, particularly in reasoning and code generation tasks. However, Qwen 2.5 Coder 32B holds its ground with efficient math problem-solving capabilities. Depending on your specific needs – whether it’s extensive context handling or faster output rates—either model could serve as a valuable tool for developers and programmers alike.